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Hospitals which can’t share their 
patient records with anyone


But want to learn from the 
combined data

Using data without sharing?

ML 
algorithm



A general problem


To compute a function of private 
inputs without revealing 
information about the inputs


Beyond what is   
revealed by the 
function

X1 X4

X3X2

f(X1, X2, X3, X4)

Secure Function Evaluation



Need to ensure


Cards are shuffled and 
dealt correctly


Complete secrecy


No “cheating” by      
players, even if 
they collude


No universally trusted 
dealer

Poker With No Dealer?



Without any trusted party, 
securely do


Distributed Machine Learning

E-commerce

Network Games

E-voting

Secure function evaluation

....

The Ambitious Goal
Any task that 
uses a trusted 

party!

Secure  
Multi-Party Computation 

(MPC)



Emulating Trusted 
Computation

Encryption/Authentication allow us to emulate a 
trusted channel


Secure MPC: to emulate a source of trusted 
computation


Trusted means it will not “leak” a party’s 
information to others


And it will not cheat in the computation


A tool for mutually distrusting parties to collaborate





This Tutorial
What does it mean to be secure?

How does one do MPC?


Warm up

Some classical protocols for computing “general” 
functions (will focus on passive corruption)


GMW

BGW

Yao’s Garbled Circuits


Glimpses of various concepts 



What does it  
mean to be  
Secure?



Terminology
Protocol: Instructions to the (honest) parties on what 
messages to send to whom based on input/local 
randomness and messages received so far.


The next-message function


Functionality: What we are aiming to achieve


Specified as the program of a trusted party



Security Issues to Consider
Protocol may leak a party’s secrets


Clearly an issue 

Even if we trust everyone not to cheat in our 
protocol (i.e., honest-but-curious)


Also, a liability for a party if extra information 
reaches it (e.g., in medical data mining)


Protocol may give adversary illegitimate influence on 
the outcome


Say in poker, if adversary can influence hands dealt

In auction, if adversary can choose its bid to just 
beat the others’



Defining Security
REAL/IDEAL paradigm 
 
 
 
 
 

Security guarantee: Whatever an adversary can do in 
the REAL world, an adversary could have done the 
same in the IDEAL world


Can’t blame the protocol for anything undesirable

PAliceAlice

 
  

BobFF

IDEAL REAL

Trusted 
Third-Party Protocol



Adversary
REAL-adversary can corrupt any set of players


IDEAL-adversary should corrupt the same set of 
players


More sophisticated notion: adaptive adversary which 
corrupts players dynamically during/after the execution


We’ll stick to static adversaries


Passive vs. Active adversary: Passive adversary gets only 
read access to the internal state of the corrupted players. 
Active adversary overwrites their state and program.



Defining Security

Secure (and 
correct) if: 


∀    

∃      s.t.

∀  

output of        
is distributed 
identically in 
REAL and IDEAL

proto proto

Env
REAL

i’face i’face

Env
IDEAL

FF

Universally Composable [Canetti’01]



(Some) Security Models
UC security: Standard simulation-based security model


Passive (a.k.a honest-but-curious) adversary: where corrupt 
parties stick to the protocol (but we don’t want to trust them 
with information)


Honest-majority security: adversary can corrupt only a strict 
minority of parties. (Not useful when only two parties involved)


Standalone security: environment is not “live”: interacts with the 
adversary before and after (but not during) the protocol


Functionality-specific non-simulation-based definitions: usually 
leave out subtle attacks (e.g. malleability related attacks)


Protocols using a trusted party for some basic functionality 
(a.k.a. setup)


Angel-UC (UC + a helpful oracle for adversary in the ideal world)



Is MPC Possible?
Can we securely realize every functionality?


No & Yes!

All subsets 
corruptible

Honest 
Majority

Computationally 
Unbounded 
(No Setup)

No

Yes
Computationally 

Unbounded 
with Setup

Yes

Computationally 
Bounded (PPT) 

(No Setup)

Univ. Composable
Angel-UC

Standalone
Passive

No
Yes
Yes
Yes



Unfair

Fair

Guaranteed

Output delivery

Passive

Adversary

Active

Covert
½⅓ Corruption 

Threshold
1

Composition

Standalone

Universally Composable

Commitment
OT

Broadcast

Set-up

MPC Dimensions

Adaptive

Static

Synchronous

Asynchronous

Time Model

Complexity 
Parameters

None

Inefficient

Efficient

Simulation



Doing MPC

Warm Up



A simple example
An auction, with Alice and Bob bidding


Rules:


A bid is an integer in the range [0,100]


Alice can bid only even integers and Bob odd 
integers


Person with the higher bid wins


Goal: find out the winning bid (winner & amount) 
without revealing anything more about the losing 
bid (beyond what is revealed by the winning bid)



A simple example
Secure protocol:


Count down from 100


At each even round Alice announces whether 
her bid equals the current count; at each odd 
round Bob does the same


Stop if a party says yes


Dutch flower auction


Perfectly secure against  
active adversary as well


Standalone. Not UC.



A second example

n parties would like to sum up their inputs 
(integers in a certain range)


Each party should learn only the final output and 
their own input  (and anything that can be 
inferred from those two)


Protocol idea: use additive secret sharing



Additive Secret Sharing
Fix any “secret” s (all elements from a finite group)


Let a, b be uniformly random conditioned on  
s = a + b.


e.g., pick a uniformly at random, set b = s - a


Each of a, b by itself carries no information about s


Generalises to multiple shares: a1,…,an uniformly 
random conditioned on s = a1 + … + an


Any subset of up to n-1 shares has no information 
about s



A second example

No colluding set of servers/clients will learn more than 
the inputs/output of the clients in the collusion, provided 
that at least one server stays out of the collusion

Summation, secure against a passive adversary

Share

Add

Add

Clients with inputs

Client with output

Servers



All 2 of 
them!

Oblivious Transfer

FOT

We Predict

STOCKS!!

AA:up, B:down

I need just 
one

But can’t tell 
you which

up

Sure

IDEAL WorldPick one out of two, 
without revealing which


Intuitive property: 
transfer partial 
information “obliviously”

x0 x1

F

b

xb



Using a (special) encryption


PKE in which one can sample 
a public-key without knowing 
secret-key


c1-b inscrutable to a  
passive corrupt receiver


Sender learns  
nothing about b

An OT Protocol�
(passive corruption)

(SKb, PKb) ← KeyGen

Sample PK1-b

PK0, PK1

c0 = Enc(x0,PK0)

c1 = Enc(x1,PK1)

c0,c1
x0,x1 b

xb

xb=Dec(cb;SKb)
x0 x1

F

b

xb



2-Party SFE

Secure Function Evaluation (SFE) IDEAL: 


Trusted party takes (X;Y). Outputs  
g(X;Y) to Alice, f(X;Y) to Bob


Randomized Functions: g(X;Y;r) and f(X;Y;r) s.t. neither 
party knows r (beyond what is revealed by output)


OT is an instance of a (deterministic) 2-party SFE


g(x0,x1;b) = none; f(x0,x1;b) = xb


Single-Output SFE: only one party gets any output

Alice

 
  

BobFF
X Y

g(X;Y) f(X;Y)



2-Party SFE

Can reduce any SFE (even randomized) to a single-output 
deterministic SFE


f’(X, M, r1; Y, r2) = ( g(X; Y; r1⊕r2)⊕M, f(X; Y; r1⊕r2) ). 
Compute f’(X, M, r1; Y, r2) with random M, r1, r2

Bob sends g(X, Y; r1⊕r2)⊕M to Alice

Passive secure

Generalizes to active security and more than 2 parties


Can reduce any single-output deterministic SFE to OT!



“Completeness” of OT

Can reduce any single-output deterministic SFE to OT!


For passive security


Proof of concept for 2 parties: An inefficient reduction


“Basic GMW”: Information-theoretic reduction to OT


Yao’s garbled circuit for 2 parties (later today)


In fact, OT is complete even for active security



“Completeness” of OT: 
Proof of Concept

Single-output 2-party function f


Alice (who knows x, but not y) prepares a table for  
f(x,⋅) with N = 2|y| entries (one for each y)


Bob uses y to decide which entry in the table to pick 
up using 1-out-of-N OT (without learning the other 
entries)


Bob learns only f(x,y) (in addition to y). Alice learns 
nothing beyond x.


Problem: N is exponentially large in |y|



1-out-of-N OT
f( (x1,…,xN); i ) = (⊥; xi)


For passive security: simply run N copies of  
1-out-of-2 OT, with inputs for jth instance being  
(0,xj; bj) where bj = 1 iff j=i


Aside: active security easily achievable too using a 
randomized protocol using N-1 copies of 1-out-of-2 OT



Doing MPC

Basic GMW



Functions as Circuits
Directed acyclic graph


Nodes: AND, OR, NOT, CONST gates, 
inputs, output(s)


Edges: Boolean valued wires


Each wire comes out of a unique gate, 
but a wire might fan-out


Can evaluate wires according to a 
topologically sorted order of gates they 
come out of


Arithmetic circuits: Wire values from a field 
and the gates are addition/multiplication

0 1



Functions as Circuits
e.g.: OR (single gate, 2 input bits, 1 bit output)


e.g.: X > Y for two bit inputs X=x1x0, Y=y1y0:                                              
(x1 ∧ ¬y1) ∨ (¬(x1 ⊕ y1) ∧ (x0 ∧ ¬y0)


Can directly convert a truth-table 
into a circuit, but circuit size  
exponential in input size


Can convert any (“efficient”) program into 
a (“small”) circuit


Interesting problems already given as succinct 
programs/circuits

00 01 10 11

00 0 0 0 0

01 1 0 0 0

10 1 1 0 0

11 1 1 1 0



Basic GMW
Adapted from the famous Goldreich-Micali-Wigderson (1987) 
protocol (due to Goldreich-Vainish, Haber-Micali,…)


Efficient passive secure MPC based on OT, without any other 
computational assumptions


Extends to arithmetic circuits, using “OLE” instead of OT


Idea: Computing on additively secret-shared values


Will write [s]i to denote shares of s, so that  
s = [s]1 + ··· + [s]m for m-way sharing


Start with m=2



Computing on Shares
Let gates be + & ⨉ over any field


XOR & AND for Boolean circuits (field GF(2) )


Plan: shares of each wire value will be computed, with 
Alice holding one share and Bob the other. At the 
end, Alice sends her share of output wire to Bob.


w = u + v : Each one locally computes [w]i = [u]i + [v]i

[u]1 [u]2u

[w]1 [w]2

+

w

+ +

[v]1 v [v]2



Computing on Shares
What about w = u ⨉ v ?


[w]1 + [w]2 = ( [u]1 + [u]2 ) ⨉ ( [v]1 + [v]2 )


Alice picks [w]1. Can let Bob compute [w]2 using the 
naive (proof-of-concept) protocol


Note: Bob’s input is ([u]2,[v]2). Over the binary field, this 
requires a single 1-out-of-4 OT.

w

u v

⨉

[u]1 [v]1 [u]2 [v]2

F

[w]1 [w]2



GMW: many parties
m-way sharing: s = [s]1 +…+ [s]m


Addition, local as before


Multiplication: For w = u ⨉ v 
[w]1 +..+ [w]m = ( [u]1 +..+ [u]m ) ⨉ ( [v]1 +..+ [v]m )


Party i computes [u]i[v]i


For every pair (i,j), i≠j, Party i picks random aij and 
lets Party j securely compute bij s.t. aij + bij = [u]i[v]j 
using the naive protocol (a single 1-out-of-2 OT)


Party i sets [w]i = [u]i[v]i + Σj ( aij + bji )

Allows security against 
arbitrary number of 

corruptions



Levels of Security

Unlimited 
Corruption

Honest 
Majority

Passive
“GMW” 
protocol 

(given OT)

Active

Unfair Fair Full

?



Unfair


Adversary can cause honest parties to abort (not receive 
output) but get its own output


In fact, it can decide which honest parties abort after seeing 
its own output


Fair


Adversary can cause everyone to abort, but then it will not 
see its own output


Full 


Guaranteed Output Delivery


Fairness and Guaranteed Output Delivery possible in general only 
with honest majority

Levels of Security



GMW against 
 active corruption

Original GMW approach: Use Zero Knowledge proofs to force the 
parties to run the protocol honestly


Needs (passive-secure) OT to be implemented using a protocol


Kilian/IPS: Direct information-theoretic reduction to OT


Alternate construction: information-theoretic reduction to OT, 
starting from passive-secure GMW



Passive-Secure GMW: 
Closer Look

Multiplication: [w]1 + [w]2 = ( [u]1 + [u]2 ) ⨉ ( [v]1 + [v]2 )


Computing shares a12, b12 s.t. a12 + b12 = [u]1⋅[v]2:


Alice picks a12 and sends (-a12, [u]1-a12) to OT.  
Bob sends [v]2 to OT.


What if Alice sends arbitrary (x,y) to OT? Effectively, setting 
a12 = -x, [u]1’ = y-x.


And what Bob sends to OT is [v]2’


i.e., arbitrary behaviour of Alice & Bob while sharing [u]1⋅[v]2 
correspond to them locally changing their shares [u]1 and [v]2



Passive-Secure GMW: 
Closer Look

Multiplication: [w]1 + [w]2 = ( [u]1 + [u]2 ) ⨉ ( [v]1 + [v]2 )


Arbitrary behaviour of Alice while sharing [u]1⋅[v]2 and [u]2⋅[v]1 
corresponds to her locally changing her shares of u and v


Alice changing her share from [u]1 to [u]1’ is effectively 
changing u to u+Δu, where Δu = [u]1’ - [u]1 depends only on her 
own view


Over all effect: a corrupt party can arbitrarily add Δu and Δv to 
wires u and v before multiplication


Also, can add deltas to all input and output wires



Active-Secure Variant of 
Basic GMW

Any active attack on Basic GMW protocol corresponds to an 
additive attack on the wires of the circuit


Idea: “Compile” the circuit such that any additive attack amounts 
to error (w.h.p.), resulting in random output


Additive Manipulation Detecting (AMD) circuits


Extension of AMD codes


e.g. encode x as a vector (x, r, xr) where r is random from a 
large field. Additive attacks (without knowing r) detected 
unless (x+δ1)(r+δ2) = (xr+δ3): i.e., δ1⋅r + x⋅δ2 + δ1⋅δ2 = δ3. 
Unlikely unless δ1 = 0.



Levels of Security

Unlimited 
Corruption

Honest 
Majority

Passive
“GMW” 
protocol 

(given OT)

Active

Unfair Fair Full

“BGW” protocol  
(no setup/computational hardness)

via AMD circuits



Doing MPC

Basic BGW



BGW

Protocol by Ben-Or, Goldwasser, Wigderson. We will 
first look at the simpler setting of passive corruption.


Passive secure MPC for arithmetic circuits (over 
large enough fields) assuming honest majority, but 
without any computational assumptions or setup


Idea: Computing on secret-shared values


Shamir secret-sharing: threshold, linear secret-
sharing, also allowing multiplication



Threshold Secret-Sharing

(n,t)-secret-sharing

Divide a message m into n shares s1,...,sn, such that 

any t shares are enough to reconstruct the secret

up to t-1 shares have no information about the secret

Additive secret-sharing is (n,n) secret-sharing

e.g., (s1,…,st-1) has the same 
distribution for every m in  

the message space



Threshold Secret-Sharing
First, (n,2) secret-sharing

Message-space = share-space = F, a field (e.g. integers mod a prime)

Share(m): pick random r. Let si = r⋅ai + m (for i=1,...,n < |F|)

Reconstruct(si, sj): r = (si-sj)/(ai-aj); m = si - r⋅ai

Each si by itself is uniformly distributed,  
irrespective of m  [Why?]

“Geometric” interpretation

Sharing picks a random “line” y = f(x), 
such that f(0) = m. Shares si = f(ai). 

si is independent of m: exactly one line passing 
through (ai,si) and (0,m’) for any secret m’

But can reconstruct the line from two points!
0 1 2 3 4 5 6

ai are n distinct,  
non-zero field elements

Since ai-1 exists, exactly one 
solution for r⋅ai+m=d, for 

every value of d



Threshold Secret-Sharing
(n,t) secret-sharing in a field F

Generalizing the geometric/algebraic view: instead of lines, use 
polynomials

Share(m): Pick a random degree t-1 polynomial f(X), such that 
f(0) = m. Shares are si = f(ai).

Random polynomial with f(0) = m: c0 + c1X + c2X2 +...+ ct-1Xt-1 
by picking c0 = m and c1,...,ct-1 at random.

Reconstruct(s1,...,st): Lagrange interpolation to find m = c0 

Need t points to reconstruct the polynomial. Given t-1 points, 
out of |F|t-1 polynomials passing through (0,m’) (for any m’) 
there is exactly one that passes through the t-1 points

Is a “Linear Secret-Sharing Scheme”

Shamir Secret-Sharing



1  1    …    1  1 1  1    …    1  1

Linear Secret-Sharing
Another look at additive secret-sharing

0  1   0   …    0 

0  0   1   …    0 

                    : 

 

0  0   0   …    1 
1 -1  -1   …   -1

 M 
s1 

s2

: 

sn-1

s1 

s2 

: 

 

sn

=

RT RT

WReconstruction vector 
RT with support in T, 
s.t. RT⋅W = [1 0 … 0]

Randomness used by 
the sharing algorithm

 
r  
 

 
s  
 

Each coordinate is 
a separate share

Linear Secret-Sharing over a field: message and shares are field elements

Reconstruction by a set T ⊆ [n] : solve the message from given shares

i.e., solve  for MWT [ M 
r ] = sT

Working with a commutative group here. 
Multiplication by ±1 and 0 well-defined in a group. 

But more broadly, we shall consider a  field .

More generally, a share can 
have multiple coordinates



Linearity of Shamir 
Secret-Sharing

Shamir’s scheme is a linear secret-sharing scheme

 M 
c1 

c2

: 

ct-1

s1 

s2 

: 

 

sn

=

1 a1  a12  …   a1t-1    
1 a2  a22  …   a2t-1 

                     

                    : 

 

1 an  an2  …   ant-1   

RT RT

Which sets T ⊆ [n] can reconstruct? i.e., T s.t. WT spans [1 0 … 0 ]?

WT spans [1 0 … 0 ] iff |T| ≥ t
For |T|=t, WT is a Vandermonde matrix, and is a basis for Ft

For |T| < t, can add a row [1 0 … 0 ] and (optionally) more rows of 
the form [1 a a2… at] to get a Vandermonde matrix. So [1 0 … 0] is 
independent of the rows of  WT

Secrecy: guaranteed for any linear secret-sharing scheme

ai are n distinct,  
non-zero field elements

Polynomial 
interpolation



Suppose two secrets m1 and m2 shared using the 
same secret-sharing scheme 
 
 
 
 
 

Then for any p,q ∈ F, shares of p⋅m1 + q⋅m2 can be 
computed locally by each party i as σi =  p⋅σ1i + q⋅σ2i 

 

 

 

W

 m1  

 c11 

 c12

 : 

 c1,u

=

 m2  

 c21 

 c22

 : 

 c2,u

p 
q

 

: 

 

σ1n

σ11  

: 

 

σ2n

σ21 p 
q

Linear Secret-Sharing: 
Computing on Shares



 

 

 

Linear Secret-Sharing: 
Computing on Shares

More generally, can compute shares of any linear 
transformation

W

 m1  

 c11 

 c12

 : 

 c1,u

=

 m2  

 c21 

 c22

 : 

 c2,u

 mv  

 cv1 

 cv2

 : 

 cv,u

Q Q 

: 

 

σ1n

σ11  

: 

 

σvn

σv1
 

: 

 

σ2n

σ21

Each row 
computed locally 

by a party



BGW
Wire values will be kept linearly secret-
shared among all servers


Each input value is secret-shared among 
the servers by the input client “owning” the 
input gate


Linear operations computed by each server 
on its shares, locally (no communication)


Shares of x, y → Shares of ax+by


Multiplication will involve communication


Coming up


Output gate evaluation: servers send their 
shares to the output client owning the gate

10

-1



Question: How to go from shares(x), shares(y) to shares(x⋅y) securely?


Idea 1: Use multiplicative structure of Shamir secret-sharing


For polynomials, multiplication commutes with evaluation: 
(f⋅g)(x) = f(x)⋅g(x)


In particular, to get a polynomial h with h(0)= f(0)⋅g(0),  
simply define h = f⋅g. Shares h(x) can be computed as f(x)⋅g(x)


But note: h has a higher degree!


Problem 1: If original degree ≥ N/2, can’t reconstruct the 
product even if all servers reveal their new shares


Solution: Use degree d < N/2 (limits to d < N/2 corruption)


Problem 2: Can’t continue protocol after one multiplication

Passive-Secure BGW



Problem: If x, y shared using a degree d polynomial, x⋅y is shared 
using a degree 2d polynomial


Solution: Bring it back to the original secret-sharing scheme!


Share switching (coming up)


Note: All N servers together should be able to linearly reconstruct 
the degree-2d sharing


Start with N > 2d


Can tolerate only up to d ( < N/2) corrupt servers (and any 
number of corrupt clients)

Passive-Secure BGW

≤ (N-1)/2



Switching Schemes
Can move from any linear secret-sharing scheme W to any other linear 
secret-sharing scheme Z “securely”

Given shares (w1, …, wn) ← W.Share(m)
Share each wi using scheme Z: (σi1,…,σin)← Z.Share(wi)
Locally each party j reconstructs using scheme W: 
zj ←  W.Recon (σ1j,…,σnj)

W

 m 
c1 
c2
: 

ct-1

=

 

: 

 

wn

w1

R
w1 

: 

wn

=  m  



Switching Schemes
Can move from any linear secret-sharing scheme W to any other linear 
secret-sharing scheme Z “securely”

Given shares (w1, …, wn) ← W.Share(m)
Share each wi using scheme Z: (σi1,…,σin)← Z.Share(wi)
Locally each party j reconstructs using scheme W: 
zj ←  W.Recon (σ1j,…,σnj)

R
w1 

: 

wn

=  m  

          …

 

: 

 

σvn

σv1

Z

 w1                       
 c11 

 c12                …
  : 

 c1,u

=

 w2     
 c21 

 c22

 : 

 c2,u

 wn  

 cv1 

 cv2

 : 

 cv,u

Party i picks ith column   

 

: 

 

σ1n

σ11  

: 

 

σ2n

σ21



R

Switching Schemes
Can move from any linear secret-sharing scheme W to any other linear 
secret-sharing scheme Z “securely”

Given shares (w1, …, wn) ← W.Share(m)
Share each wi using scheme Z: (σi1,…,σin)← Z.Share(wi)
Locally each party j reconstructs using scheme W: 
zj ←  W.Recon (σ1j,…,σnj)

R
w1 

: 

wn

=  m  

          …

 

: 

 

σvn

σv1

Z

 w1                       
 c11 

 c12                …
  : 

 c1,u

=

 w2     
 c21 

 c22

 : 

 c2,u

 wn  

 cv1 

 cv2

 : 

 cv,u

 

: 

 

σ1n

σ11  

: 

 

σ2n

σ21

Party j computes jth row

R
=

 

: 

 

zn

z1

 m 
r1 

r2

: 

ru’



Passive-Secure BGW: Summary

Locally multiplying degree d shares of M1 and M2 gives a degree 2d 
share of M1⋅M2 . Then switch back to a fresh degree d sharing 
(involves communicating degree d shares of degree 2d shares)

A function f given as a program with linear steps and multiplications: 
arithmetic circuit (over a finite field)

Share

Linear  
steps

Reconstruct

Clients with inputs

Client with output

Servers

Mult. Mult.Mult.

Need n > 2d servers. 
Security against d 
colluding servers

Shamir



We want that the adversary learns nothing about the honest 
parties’ inputs


The only messages received are from fresh degree d secret 
sharings (even in the multiplication step), even though the 
messages being shared are not uniform


To the adversary, this appears as uniform random shares

Passive-Secure BGW: 
Security

First consider the protocol till just before output reconstruction 



Adversary learns nothing about the honest parties’ inputs


Now consider the output reconstruction step as well


Observation: Enough to show security against an adversary who 
actually corrupts the maximum allowed number of servers, d


Consider the messages received by the adversary for each 
output wire it owns


Fully determined by the d shares it already has and the 
output value (which it is allowed to learn)


So entire view determined by own inputs, the random values 
from the computation phase, and own outputs

Passive-Secure BGW: 
Security

First consider the protocol till just before output reconstruction 



Levels of Security

Unlimited 
Corruption

Honest 
Majority

Passive
“GMW” 
protocol 

(given OT)

Active

Unfair Fair Full

“BGW” protocol  
(no setup/computational hardness)

via AMD circuits



Tool: Error-Correcting Secret-Sharing (ECSS)


a.k.a. robust secret-sharing


Allows reconstruction as long as a majority of the shares 
submitted are correct


e.g., Mutually authenticating shares (using statistical 
MACs). To reconstruct, look for a clique of size n/2 of 
mutually consistent shares.

Fair Honest-Majority MPC



Fair Honest-Majority MPC

Share inputs using ECSS


Run unfair protocol to obtain ECSS shares of output


If no abort, each honest party broadcasts OK


If all say OK, then send ECSS shares for reconstruction


Adversary can cause abort for all parties, but without knowing its 
own outputs. Cannot change output by corrupting < n/2 parties.


Note: requires broadcast to be fully secure (guaranteed output 
delivery). Possible to implement when < n/3 corrupt parties



Full Security

The main difficulty, compared to active-secure MPC, is in 
identifying who cheated


Not possible to exactly identify one cheating party


e.g., [ P1 sends garbage to P2 over a private link ] ≡  
[ P2 discards what P1 sent, replacing it with garbage ]


Can hope to identify a set of 2 parties, at least one of which is 
corrupt


id1/2-abort-security: Either all honest parties get output, or they 
agree on a set of parties, at least half of which are corrupt



Assume we have id1/2-abort-secure protocol for general functions


Requires additional techniques, involving consistency checks 
and complaining if the checks fail (omitted)


ECSS share inputs


Run a id1/2-abort-secure protocol to obtain ECSS shares of 
outputs


If abort/error, eliminate the identified set (who reshare their 
inputs among active players). Repeat.


If no abort, send shares for reconstruction


Note: honest majority maintained among active parties

Full Security
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Doing MPC

Yao’s Garbled Circuit



Functions as Circuits
Directed acyclic graph

Nodes: multiplication and addition 
gates, constant gates, inputs, 
output(s)

Edges: wires carrying values from F 

Each wire comes out of a unique 
gate, but a wire might fan-out

Can evaluate wires according to a 
topologically sorted order of gates 
they come out of
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2-Party MPC for 
 General Circuits

“General”: evaluate any arbitrary (boolean) circuit

One-sided output: both parties give inputs, only one party 
gets outputs

Either party maybe corrupted passively

Consider evaluating OR (single gate circuit)

Alice holds x=a, Bob has y=b; Bob should get OR(x,y)
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A Physical Protocol
Alice prepares 4 boxes Bxy corresponding to 4 
possible input scenarios, and 4 padlocks/keys Kx=0, 
Kx=1, Ky=0 and Ky=1

Inside Bxy=ab she places the bit OR(a,b) and locks it 
with two padlocks Kx=a and Ky=b (need to open both 
to open the box)

She un-labels the four boxes and sends them in 
random order to Bob. Also sends the key Kx=a   
(labeled only as Kx). 

So far Bob gets no information

Bob “obliviously picks up” Ky=b, and tries the two 
keys Kx,Ky on the four boxes. For one box both 
locks open and he gets the output. 
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Secure?

For curious Alice: only influence from Bob is when 
he picks up his key Ky=b

But this is done “obliviously”, so she learns 
nothing

For curious Bob: What he sees is predictable (i.e., 
can be simulated), given the final outcome

What Bob sees: His key opens Ky in two boxes, 
Alice’s opens Kx in two boxes; only one random 
box fully opens. It has the outcome.

Note when y=1, cases x=0 and x=1 appear same
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A Physical Protocol



Larger Circuits

00 1 1

0 1
Idea: For each gate in the circuit Alice will 
prepare locked boxes, but will use it to keep 
keys for the next gate

For each wire w in the circuit (i.e., input wires, 
or output of a gate) pick 2 keys Kw=0 and Kw=1

0 1 0 1 0 1

0 1 0 10 1



Larger Circuits

For each gate G with input wires (u,v) and output  
wire w, prepare 4 boxes Buv and place Kw=G(a,b) inside 
box Buv=ab. Lock Buv=ab with keys Ku=a and Kv=b

Give to Bob: Boxes for each gate, one key for each of 
Alice’s input wires

Obliviously: one key for each of Bob’s input wires

Boxes for output gates have values instead of keys
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Idea: For each gate in the circuit Alice will 
prepare locked boxes, but will use it to keep 
keys for the next gate

For each wire w in the circuit (i.e., input wires, 
or output of a gate) pick 2 keys Kw=0 and Kw=1



Larger Circuits
Evaluation: Bob gets one key for each input wire of a 
gate, opens one box for the gate, gets one key for the 
output wire, and proceeds

Gets output from a box for the output gate

Security similar to before

Curious Alice sees nothing

Bob can simulate his view given final output: Bob could 
prepare boxes and keys (stuffing unopenable boxes 
arbitrarily); for an output gate, place the output bit in 
the box that opens
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Garbled Circuit
That was too physical!

Yao’s Garbled circuit: boxes/keys replaced by Symmetric Key 
Encryption (specifically, using a Pseudorandom Function or PRF)

EncK(m) = PRFK(index) ⊕ m, where index is a wire index 
(distinct for different wires fanning-out of the same gate)

Double lock: EncKx(EncKy(m))

PRF in practice: a block-cipher, like AES

Uses Oblivious Transfer for strings:  For passive security, can just 
repeat bit-OT several times to transfer longer keys



Garbled Circuit
One issue when using encryption instead of locks

Given four doubly locked boxes (in random order) and two 
keys, we simply tried opening all locks until one box fully 
opened

With encryption, cannot quite tell if a box opened or not! 
Outcome of decryption looks random in either case.

Simple solution: encode the keys so that wrong decryption 
does not result in outputs that look like valid encoding of keys

Better solution: For each wire, the 0 & 1 keys  
have distinct “shape” labels, assigned at random.  
Each locked box marked with the shape of  
the two keys needed to unlock it. 00 1 1

0 1



Defining MPC



A simple example
Recall the Dutch flower auction protocol


Count down from 100


At each even round Alice announces whether 
her bid equals the current count; at each odd 
round Bob does the same


Stop if a party says yes


Perfectly secure against  
active adversary as well


But is that ideal enough?



Attack on  
Dutch Flower Auction

Alice and Bob are taking part in two auctions

Alice’s goal: ensure that Bob wins at least one auction with some 
bid z, and the winning bid in the other auction ∈ {z,z-1}

Easy in the protocol: run the two protocols lockstep. Wait till Bob 
says yes in one. Done if Bob says yes in the other simultaneously. 
Else Alice will say yes in the next round.

Why is this an attack?

Impossible for Alice to ensure this in IDEAL!



Attack on  
Dutch Flower Auction

Alice’s goal: ensure that Bob wins at least one auction with some 
bid z, and the winning bid in the other auction ∈ {z,z-1}

Impossible to ensure this in IDEAL!

Alice can get a result in one session, before running the other. 
But what should she submit as her input x in the first one? 

Trouble if x≠0, because she could win (i.e., z-1=x) and Bob’s 
input in the other session may be ≠ x+1

Trouble if x=0, because Bob could win with input 1 (i.e., z=1) 
and in the other session his input > 1 



Standalone security definition does not ensure security when 
composed

Different modes of composition

Sequential composition: protocols executed one after the 
other. Adversary communicates with the environment between 
executions.

Concurrent composition: multiple sessions (typically of the 
same protocol) are active at the same time, and the 
adversary can coordinate its actions across the sessions

Composition Issues
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Standalone security definition does not ensure security when 
composed

Different modes of composition

Sequential composition: protocols executed one after the 
other. Adversary communicates with the environment between 
executions.

Concurrent composition: multiple sessions (typically of the 
same protocol) are active at the same time, and the 
adversary can coordinate its actions across the sessions

Also, subroutine calls

Composition Issues
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IDEAL

A “REAL” protocol in which parties access (another) IDEAL protocol

Subroutines
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Standalone security definition doesn’t ensure security when 
composed

Different modes of composition

Sequential composition: protocols executed one after the 
other. Adversary communicates with the environment between 
executions. (OK by standalone security definition.)

Concurrent composition: multiple sessions (typically of the 
same protocol) are active at the same time, and the 
adversary can coordinate its actions across the sessions

Also, subroutine calls

Universal composition: Executed in an arbitrary environment 
which may include other protocol sessions (possibly calling 
this session as a subroutine). Live communication between 
environment and adversary.

Composition Issues
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World 3World 1

Replace protocol         with         which is as secure, etc.
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Universal Composition

Hope: resulting 
system is as secure 
as the one we 
started with World 4World 1

Replace protocol         with         which is as secure, etc.
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Universal Composition
Start from world A (think “IDEAL”)

Repeat (for any poly number of times):

For some 2 “protocols” (that possibly make use of ideal 
functionalities) I and R such that R is as secure as I, 
substitute an I-session by an R-session

Say we obtain world B (think “REAL”)

UC Theorem: Then world B is as secure as world A

Gives a modular implementation of the IDEAL world


