
Secure Multi-Party
Computation
A Quick Introduction

Manoj Prabhakaran :: IIT Bombay

Hospitals which can’t share their
patient records with anyone

But want to learn from the
combined data

Using data without sharing?

ML
algorithm

A general problem

To compute a function of private
inputs without revealing
information about the inputs

Beyond what is
revealed by the
function

X1 X4

X3X2

f(X1, X2, X3, X4)

Secure Function Evaluation

Need to ensure

Cards are shuffled and
dealt correctly

Complete secrecy

No “cheating” by
players, even if
they collude

No universally trusted
dealer

Poker With No Dealer?

Without any trusted party,
securely do

Distributed Machine Learning

E-commerce

Network Games

E-voting

Secure function evaluation

....

The Ambitious Goal
Any task that
uses a trusted

party!

Secure
Multi-Party Computation

(MPC)

Emulating Trusted
Computation

Encryption/Authentication allow us to emulate a
trusted channel

Secure MPC: to emulate a source of trusted
computation

Trusted means it will not “leak” a party’s
information to others

And it will not cheat in the computation

A tool for mutually distrusting parties to collaborate

This Tutorial
What does it mean to be secure?

How does one do MPC?

Warm up

Some classical protocols for computing “general”
functions (will focus on passive corruption)

GMW

BGW

Yao’s Garbled Circuits

Glimpses of various concepts

What does it
mean to be
Secure?

Terminology
Protocol: Instructions to the (honest) parties on what
messages to send to whom based on input/local
randomness and messages received so far.

The next-message function

Functionality: What we are aiming to achieve

Specified as the program of a trusted party

Security Issues to Consider
Protocol may leak a party’s secrets

Clearly an issue

Even if we trust everyone not to cheat in our
protocol (i.e., honest-but-curious)

Also, a liability for a party if extra information
reaches it (e.g., in medical data mining)

Protocol may give adversary illegitimate influence on
the outcome

Say in poker, if adversary can influence hands dealt

In auction, if adversary can choose its bid to just
beat the others’

Defining Security
REAL/IDEAL paradigm

Security guarantee: Whatever an adversary can do in
the REAL world, an adversary could have done the
same in the IDEAL world

Can’t blame the protocol for anything undesirable

PAliceAlice

BobFF

IDEAL REAL

Trusted
Third-Party Protocol

Adversary
REAL-adversary can corrupt any set of players

IDEAL-adversary should corrupt the same set of
players

More sophisticated notion: adaptive adversary which
corrupts players dynamically during/after the execution

We’ll stick to static adversaries

Passive vs. Active adversary: Passive adversary gets only
read access to the internal state of the corrupted players.
Active adversary overwrites their state and program.

Defining Security

Secure (and
correct) if:

∀

∃ s.t.

∀

output of
is distributed
identically in
REAL and IDEAL

proto proto

Env
REAL

i’face i’face

Env
IDEAL

FF

Universally Composable [Canetti’01]

(Some) Security Models
UC security: Standard simulation-based security model

Passive (a.k.a honest-but-curious) adversary: where corrupt
parties stick to the protocol (but we don’t want to trust them
with information)

Honest-majority security: adversary can corrupt only a strict
minority of parties. (Not useful when only two parties involved)

Standalone security: environment is not “live”: interacts with the
adversary before and after (but not during) the protocol

Functionality-specific non-simulation-based definitions: usually
leave out subtle attacks (e.g. malleability related attacks)

Protocols using a trusted party for some basic functionality
(a.k.a. setup)

Angel-UC (UC + a helpful oracle for adversary in the ideal world)

Is MPC Possible?
Can we securely realize every functionality?

No & Yes!

All subsets
corruptible

Honest
Majority

Computationally
Unbounded
(No Setup)

No

Yes
Computationally

Unbounded
with Setup

Yes

Computationally
Bounded (PPT)

(No Setup)

Univ. Composable
Angel-UC

Standalone
Passive

No
Yes
Yes
Yes

Unfair

Fair

Guaranteed

Output delivery

Passive

Adversary

Active

Covert
½⅓ Corruption

Threshold
1

Composition

Standalone

Universally Composable

Commitment
OT

Broadcast

Set-up

MPC Dimensions

Adaptive

Static

Synchronous

Asynchronous

Time Model

Complexity
Parameters

None

Inefficient

Efficient

Simulation

Doing MPC

Warm Up

A simple example
An auction, with Alice and Bob bidding

Rules:

A bid is an integer in the range [0,100]

Alice can bid only even integers and Bob odd
integers

Person with the higher bid wins

Goal: find out the winning bid (winner & amount)
without revealing anything more about the losing
bid (beyond what is revealed by the winning bid)

A simple example
Secure protocol:

Count down from 100

At each even round Alice announces whether
her bid equals the current count; at each odd
round Bob does the same

Stop if a party says yes

Dutch flower auction

Perfectly secure against
active adversary as well

Standalone. Not UC.

A second example

n parties would like to sum up their inputs
(integers in a certain range)

Each party should learn only the final output and
their own input (and anything that can be
inferred from those two)

Protocol idea: use additive secret sharing

Additive Secret Sharing
Fix any “secret” s (all elements from a finite group)

Let a, b be uniformly random conditioned on
s = a + b.

e.g., pick a uniformly at random, set b = s - a

Each of a, b by itself carries no information about s

Generalises to multiple shares: a1,…,an uniformly
random conditioned on s = a1 + … + an

Any subset of up to n-1 shares has no information
about s

A second example

No colluding set of servers/clients will learn more than
the inputs/output of the clients in the collusion, provided
that at least one server stays out of the collusion

Summation, secure against a passive adversary

Share

Add

Add

Clients with inputs

Client with output

Servers

All 2 of
them!

Oblivious Transfer

FOT

We Predict

STOCKS!!

AA:up, B:down

I need just
one

But can’t tell
you which

up

Sure

IDEAL WorldPick one out of two,
without revealing which

Intuitive property:
transfer partial
information “obliviously”

x0 x1

F

b

xb

Using a (special) encryption

PKE in which one can sample
a public-key without knowing
secret-key

c1-b inscrutable to a
passive corrupt receiver

Sender learns
nothing about b

An OT Protocol
(passive corruption)

(SKb, PKb) ← KeyGen
Sample PK1-b

PK0, PK1

c0 = Enc(x0,PK0)
c1 = Enc(x1,PK1)

c0,c1
x0,x1 b

xb

xb=Dec(cb;SKb)
x0 x1

F

b

xb

2-Party SFE

Secure Function Evaluation (SFE) IDEAL:

Trusted party takes (X;Y). Outputs
g(X;Y) to Alice, f(X;Y) to Bob

Randomized Functions: g(X;Y;r) and f(X;Y;r) s.t. neither
party knows r (beyond what is revealed by output)

OT is an instance of a (deterministic) 2-party SFE

g(x0,x1;b) = none; f(x0,x1;b) = xb

Single-Output SFE: only one party gets any output

Alice

BobFF
X Y

g(X;Y) f(X;Y)

2-Party SFE

Can reduce any SFE (even randomized) to a single-output
deterministic SFE

f’(X, M, r1; Y, r2) = (g(X; Y; r1⊕r2)⊕M, f(X; Y; r1⊕r2)).
Compute f’(X, M, r1; Y, r2) with random M, r1, r2

Bob sends g(X, Y; r1⊕r2)⊕M to Alice

Passive secure

Generalizes to active security and more than 2 parties

Can reduce any single-output deterministic SFE to OT!

“Completeness” of OT

Can reduce any single-output deterministic SFE to OT!

For passive security

Proof of concept for 2 parties: An inefficient reduction

“Basic GMW”: Information-theoretic reduction to OT

Yao’s garbled circuit for 2 parties (later today)

In fact, OT is complete even for active security

“Completeness” of OT:
Proof of Concept

Single-output 2-party function f

Alice (who knows x, but not y) prepares a table for
f(x,⋅) with N = 2|y| entries (one for each y)

Bob uses y to decide which entry in the table to pick
up using 1-out-of-N OT (without learning the other
entries)

Bob learns only f(x,y) (in addition to y). Alice learns
nothing beyond x.

Problem: N is exponentially large in |y|

1-out-of-N OT
f((x1,…,xN); i) = (⊥; xi)

For passive security: simply run N copies of
1-out-of-2 OT, with inputs for jth instance being
(0,xj; bj) where bj = 1 iff j=i

Aside: active security easily achievable too using a
randomized protocol using N-1 copies of 1-out-of-2 OT

Doing MPC

Basic GMW

Functions as Circuits
Directed acyclic graph

Nodes: AND, OR, NOT, CONST gates,
inputs, output(s)

Edges: Boolean valued wires

Each wire comes out of a unique gate,
but a wire might fan-out

Can evaluate wires according to a
topologically sorted order of gates they
come out of

Arithmetic circuits: Wire values from a field
and the gates are addition/multiplication

0 1

Functions as Circuits
e.g.: OR (single gate, 2 input bits, 1 bit output)

e.g.: X > Y for two bit inputs X=x1x0, Y=y1y0:
(x1 ∧ ¬y1) ∨ (¬(x1 ⊕ y1) ∧ (x0 ∧ ¬y0)

Can directly convert a truth-table
into a circuit, but circuit size
exponential in input size

Can convert any (“efficient”) program into
a (“small”) circuit

Interesting problems already given as succinct
programs/circuits

00 01 10 11

00 0 0 0 0

01 1 0 0 0

10 1 1 0 0

11 1 1 1 0

Basic GMW
Adapted from the famous Goldreich-Micali-Wigderson (1987)
protocol (due to Goldreich-Vainish, Haber-Micali,…)

Efficient passive secure MPC based on OT, without any other
computational assumptions

Extends to arithmetic circuits, using “OLE” instead of OT

Idea: Computing on additively secret-shared values

Will write [s]i to denote shares of s, so that
s = [s]1 + ··· + [s]m for m-way sharing

Start with m=2

Computing on Shares
Let gates be + & ⨉ over any field

XOR & AND for Boolean circuits (field GF(2))

Plan: shares of each wire value will be computed, with
Alice holding one share and Bob the other. At the
end, Alice sends her share of output wire to Bob.

w = u + v : Each one locally computes [w]i = [u]i + [v]i

[u]1 [u]2u

[w]1 [w]2

+

w

+ +

[v]1 v [v]2

Computing on Shares
What about w = u ⨉ v ?

[w]1 + [w]2 = ([u]1 + [u]2) ⨉ ([v]1 + [v]2)

Alice picks [w]1. Can let Bob compute [w]2 using the
naive (proof-of-concept) protocol

Note: Bob’s input is ([u]2,[v]2). Over the binary field, this
requires a single 1-out-of-4 OT.

w

u v

⨉

[u]1 [v]1 [u]2 [v]2

F

[w]1 [w]2

GMW: many parties
m-way sharing: s = [s]1 +…+ [s]m

Addition, local as before

Multiplication: For w = u ⨉ v
[w]1 +..+ [w]m = ([u]1 +..+ [u]m) ⨉ ([v]1 +..+ [v]m)

Party i computes [u]i[v]i

For every pair (i,j), i≠j, Party i picks random aij and
lets Party j securely compute bij s.t. aij + bij = [u]i[v]j
using the naive protocol (a single 1-out-of-2 OT)

Party i sets [w]i = [u]i[v]i + Σj (aij + bji)

Allows security against
arbitrary number of

corruptions

Levels of Security

Unlimited
Corruption

Honest
Majority

Passive
“GMW”
protocol

(given OT)

Active

Unfair Fair Full

?

Unfair

Adversary can cause honest parties to abort (not receive
output) but get its own output

In fact, it can decide which honest parties abort after seeing
its own output

Fair

Adversary can cause everyone to abort, but then it will not
see its own output

Full

Guaranteed Output Delivery

Fairness and Guaranteed Output Delivery possible in general only
with honest majority

Levels of Security

GMW against
 active corruption

Original GMW approach: Use Zero Knowledge proofs to force the
parties to run the protocol honestly

Needs (passive-secure) OT to be implemented using a protocol

Kilian/IPS: Direct information-theoretic reduction to OT

Alternate construction: information-theoretic reduction to OT,
starting from passive-secure GMW

Passive-Secure GMW:
Closer Look

Multiplication: [w]1 + [w]2 = ([u]1 + [u]2) ⨉ ([v]1 + [v]2)

Computing shares a12, b12 s.t. a12 + b12 = [u]1⋅[v]2:

Alice picks a12 and sends (-a12, [u]1-a12) to OT.
Bob sends [v]2 to OT.

What if Alice sends arbitrary (x,y) to OT? Effectively, setting
a12 = -x, [u]1’ = y-x.

And what Bob sends to OT is [v]2’

i.e., arbitrary behaviour of Alice & Bob while sharing [u]1⋅[v]2
correspond to them locally changing their shares [u]1 and [v]2

Passive-Secure GMW:
Closer Look

Multiplication: [w]1 + [w]2 = ([u]1 + [u]2) ⨉ ([v]1 + [v]2)

Arbitrary behaviour of Alice while sharing [u]1⋅[v]2 and [u]2⋅[v]1
corresponds to her locally changing her shares of u and v

Alice changing her share from [u]1 to [u]1’ is effectively
changing u to u+Δu, where Δu = [u]1’ - [u]1 depends only on her
own view

Over all effect: a corrupt party can arbitrarily add Δu and Δv to
wires u and v before multiplication

Also, can add deltas to all input and output wires

Active-Secure Variant of
Basic GMW

Any active attack on Basic GMW protocol corresponds to an
additive attack on the wires of the circuit

Idea: “Compile” the circuit such that any additive attack amounts
to error (w.h.p.), resulting in random output

Additive Manipulation Detecting (AMD) circuits

Extension of AMD codes

e.g. encode x as a vector (x, r, xr) where r is random from a
large field. Additive attacks (without knowing r) detected
unless (x+δ1)(r+δ2) = (xr+δ3): i.e., δ1⋅r + x⋅δ2 + δ1⋅δ2 = δ3.
Unlikely unless δ1 = 0.

Levels of Security

Unlimited
Corruption

Honest
Majority

Passive
“GMW”
protocol

(given OT)

Active

Unfair Fair Full

“BGW” protocol
(no setup/computational hardness)

via AMD circuits

Doing MPC

Basic BGW

BGW

Protocol by Ben-Or, Goldwasser, Wigderson. We will
first look at the simpler setting of passive corruption.

Passive secure MPC for arithmetic circuits (over
large enough fields) assuming honest majority, but
without any computational assumptions or setup

Idea: Computing on secret-shared values

Shamir secret-sharing: threshold, linear secret-
sharing, also allowing multiplication

Threshold Secret-Sharing

(n,t)-secret-sharing

Divide a message m into n shares s1,...,sn, such that

any t shares are enough to reconstruct the secret

up to t-1 shares have no information about the secret

Additive secret-sharing is (n,n) secret-sharing

e.g., (s1,…,st-1) has the same
distribution for every m in

the message space

Threshold Secret-Sharing
First, (n,2) secret-sharing

Message-space = share-space = F, a field (e.g. integers mod a prime)

Share(m): pick random r. Let si = r⋅ai + m (for i=1,...,n < |F|)

Reconstruct(si, sj): r = (si-sj)/(ai-aj); m = si - r⋅ai

Each si by itself is uniformly distributed,
irrespective of m [Why?]

“Geometric” interpretation

Sharing picks a random “line” y = f(x),
such that f(0) = m. Shares si = f(ai).

si is independent of m: exactly one line passing
through (ai,si) and (0,m’) for any secret m’

But can reconstruct the line from two points!
0 1 2 3 4 5 6

ai are n distinct,
non-zero field elements

Since ai-1 exists, exactly one
solution for r⋅ai+m=d, for

every value of d

Threshold Secret-Sharing
(n,t) secret-sharing in a field F

Generalizing the geometric/algebraic view: instead of lines, use
polynomials

Share(m): Pick a random degree t-1 polynomial f(X), such that
f(0) = m. Shares are si = f(ai).

Random polynomial with f(0) = m: c0 + c1X + c2X2 +...+ ct-1Xt-1
by picking c0 = m and c1,...,ct-1 at random.

Reconstruct(s1,...,st): Lagrange interpolation to find m = c0

Need t points to reconstruct the polynomial. Given t-1 points,
out of |F|t-1 polynomials passing through (0,m’) (for any m’)
there is exactly one that passes through the t-1 points

Is a “Linear Secret-Sharing Scheme”

Shamir Secret-Sharing

1 1 … 1 1 1 1 … 1 1

Linear Secret-Sharing
Another look at additive secret-sharing

0 1 0 … 0

0 0 1 … 0

 :

0 0 0 … 1
1 -1 -1 … -1

 M
s1

s2

:

sn-1

s1

s2

:

sn

=

RT RT

WReconstruction vector
RT with support in T,
s.t. RT⋅W = [1 0 … 0]

Randomness used by
the sharing algorithm

r

s

Each coordinate is
a separate share

Linear Secret-Sharing over a field: message and shares are field elements

Reconstruction by a set T ⊆ [n] : solve the message from given shares

i.e., solve for MWT [M
r] = sT

Working with a commutative group here.
Multiplication by ±1 and 0 well-defined in a group.

But more broadly, we shall consider a field .

More generally, a share can
have multiple coordinates

Linearity of Shamir
Secret-Sharing

Shamir’s scheme is a linear secret-sharing scheme

 M
c1

c2

:

ct-1

s1

s2

:

sn

=

1 a1 a12 … a1t-1
1 a2 a22 … a2t-1

 :

1 an an2 … ant-1

RT RT

Which sets T ⊆ [n] can reconstruct? i.e., T s.t. WT spans [1 0 … 0]?

WT spans [1 0 … 0] iff |T| ≥ t
For |T|=t, WT is a Vandermonde matrix, and is a basis for Ft

For |T| < t, can add a row [1 0 … 0] and (optionally) more rows of
the form [1 a a2… at] to get a Vandermonde matrix. So [1 0 … 0] is
independent of the rows of WT

Secrecy: guaranteed for any linear secret-sharing scheme

ai are n distinct,
non-zero field elements

Polynomial
interpolation

Suppose two secrets m1 and m2 shared using the
same secret-sharing scheme

Then for any p,q ∈ F, shares of p⋅m1 + q⋅m2 can be
computed locally by each party i as σi = p⋅σ1i + q⋅σ2i

W

 m1

 c11

 c12

 :

 c1,u

=

 m2

 c21

 c22

 :

 c2,u

p
q

:

σ1n

σ11

:

σ2n

σ21 p
q

Linear Secret-Sharing:
Computing on Shares

Linear Secret-Sharing:
Computing on Shares

More generally, can compute shares of any linear
transformation

W

 m1

 c11

 c12

 :

 c1,u

=

 m2

 c21

 c22

 :

 c2,u

 mv

 cv1

 cv2

 :

 cv,u

Q Q

:

σ1n

σ11

:

σvn

σv1

:

σ2n

σ21

Each row
computed locally

by a party

BGW
Wire values will be kept linearly secret-
shared among all servers

Each input value is secret-shared among
the servers by the input client “owning” the
input gate

Linear operations computed by each server
on its shares, locally (no communication)

Shares of x, y → Shares of ax+by

Multiplication will involve communication

Coming up

Output gate evaluation: servers send their
shares to the output client owning the gate

10

-1

Question: How to go from shares(x), shares(y) to shares(x⋅y) securely?

Idea 1: Use multiplicative structure of Shamir secret-sharing

For polynomials, multiplication commutes with evaluation:
(f⋅g)(x) = f(x)⋅g(x)

In particular, to get a polynomial h with h(0)= f(0)⋅g(0),
simply define h = f⋅g. Shares h(x) can be computed as f(x)⋅g(x)

But note: h has a higher degree!

Problem 1: If original degree ≥ N/2, can’t reconstruct the
product even if all servers reveal their new shares

Solution: Use degree d < N/2 (limits to d < N/2 corruption)

Problem 2: Can’t continue protocol after one multiplication

Passive-Secure BGW

Problem: If x, y shared using a degree d polynomial, x⋅y is shared
using a degree 2d polynomial

Solution: Bring it back to the original secret-sharing scheme!

Share switching (coming up)

Note: All N servers together should be able to linearly reconstruct
the degree-2d sharing

Start with N > 2d

Can tolerate only up to d (< N/2) corrupt servers (and any
number of corrupt clients)

Passive-Secure BGW

≤ (N-1)/2

Switching Schemes
Can move from any linear secret-sharing scheme W to any other linear
secret-sharing scheme Z “securely”

Given shares (w1, …, wn) ← W.Share(m)
Share each wi using scheme Z: (σi1,…,σin)← Z.Share(wi)
Locally each party j reconstructs using scheme W:
zj ← W.Recon (σ1j,…,σnj)

W

 m
c1
c2
:

ct-1

=

:

wn

w1

R
w1

:

wn

= m

Switching Schemes
Can move from any linear secret-sharing scheme W to any other linear
secret-sharing scheme Z “securely”

Given shares (w1, …, wn) ← W.Share(m)
Share each wi using scheme Z: (σi1,…,σin)← Z.Share(wi)
Locally each party j reconstructs using scheme W:
zj ← W.Recon (σ1j,…,σnj)

R
w1

:

wn

= m

 …

:

σvn

σv1

Z

 w1
 c11

 c12 …
 :

 c1,u

=

 w2
 c21

 c22

 :

 c2,u

 wn

 cv1

 cv2

 :

 cv,u

Party i picks ith column

:

σ1n

σ11

:

σ2n

σ21

R

Switching Schemes
Can move from any linear secret-sharing scheme W to any other linear
secret-sharing scheme Z “securely”

Given shares (w1, …, wn) ← W.Share(m)
Share each wi using scheme Z: (σi1,…,σin)← Z.Share(wi)
Locally each party j reconstructs using scheme W:
zj ← W.Recon (σ1j,…,σnj)

R
w1

:

wn

= m

 …

:

σvn

σv1

Z

 w1
 c11

 c12 …
 :

 c1,u

=

 w2
 c21

 c22

 :

 c2,u

 wn

 cv1

 cv2

 :

 cv,u

:

σ1n

σ11

:

σ2n

σ21

Party j computes jth row

R
=

:

zn

z1

 m
r1

r2

:

ru’

Passive-Secure BGW: Summary

Locally multiplying degree d shares of M1 and M2 gives a degree 2d
share of M1⋅M2 . Then switch back to a fresh degree d sharing
(involves communicating degree d shares of degree 2d shares)

A function f given as a program with linear steps and multiplications:
arithmetic circuit (over a finite field)

Share

Linear
steps

Reconstruct

Clients with inputs

Client with output

Servers

Mult. Mult.Mult.

Need n > 2d servers.
Security against d
colluding servers

Shamir

We want that the adversary learns nothing about the honest
parties’ inputs

The only messages received are from fresh degree d secret
sharings (even in the multiplication step), even though the
messages being shared are not uniform

To the adversary, this appears as uniform random shares

Passive-Secure BGW:
Security

First consider the protocol till just before output reconstruction

Adversary learns nothing about the honest parties’ inputs

Now consider the output reconstruction step as well

Observation: Enough to show security against an adversary who
actually corrupts the maximum allowed number of servers, d

Consider the messages received by the adversary for each
output wire it owns

Fully determined by the d shares it already has and the
output value (which it is allowed to learn)

So entire view determined by own inputs, the random values
from the computation phase, and own outputs

Passive-Secure BGW:
Security

First consider the protocol till just before output reconstruction

Levels of Security

Unlimited
Corruption

Honest
Majority

Passive
“GMW”
protocol

(given OT)

Active

Unfair Fair Full

“BGW” protocol
(no setup/computational hardness)

via AMD circuits

Tool: Error-Correcting Secret-Sharing (ECSS)

a.k.a. robust secret-sharing

Allows reconstruction as long as a majority of the shares
submitted are correct

e.g., Mutually authenticating shares (using statistical
MACs). To reconstruct, look for a clique of size n/2 of
mutually consistent shares.

Fair Honest-Majority MPC

Fair Honest-Majority MPC

Share inputs using ECSS

Run unfair protocol to obtain ECSS shares of output

If no abort, each honest party broadcasts OK

If all say OK, then send ECSS shares for reconstruction

Adversary can cause abort for all parties, but without knowing its
own outputs. Cannot change output by corrupting < n/2 parties.

Note: requires broadcast to be fully secure (guaranteed output
delivery). Possible to implement when < n/3 corrupt parties

Full Security

The main difficulty, compared to active-secure MPC, is in
identifying who cheated

Not possible to exactly identify one cheating party

e.g., [P1 sends garbage to P2 over a private link] ≡
[P2 discards what P1 sent, replacing it with garbage]

Can hope to identify a set of 2 parties, at least one of which is
corrupt

id1/2-abort-security: Either all honest parties get output, or they
agree on a set of parties, at least half of which are corrupt

Assume we have id1/2-abort-secure protocol for general functions

Requires additional techniques, involving consistency checks
and complaining if the checks fail (omitted)

ECSS share inputs

Run a id1/2-abort-secure protocol to obtain ECSS shares of
outputs

If abort/error, eliminate the identified set (who reshare their
inputs among active players). Repeat.

If no abort, send shares for reconstruction

Note: honest majority maintained among active parties

Full Security

Levels of Security

Unlimited
Corruption

Honest
Majority

Passive
“GMW”
protocol

(given OT)

Active

Unfair Fair Full

“BGW” protocol
(no setup/computational hardness)

via AMD circuits

via error-
correcting
secret-
sharing

via
identification

&
elimination

Doing MPC

Yao’s Garbled Circuit

Functions as Circuits
Directed acyclic graph

Nodes: multiplication and addition
gates, constant gates, inputs,
output(s)

Edges: wires carrying values from F

Each wire comes out of a unique
gate, but a wire might fan-out

Can evaluate wires according to a
topologically sorted order of gates
they come out of

10

-1

Re
ca
ll

2-Party MPC for
 General Circuits

“General”: evaluate any arbitrary (boolean) circuit

One-sided output: both parties give inputs, only one party
gets outputs

Either party maybe corrupted passively

Consider evaluating OR (single gate circuit)

Alice holds x=a, Bob has y=b; Bob should get OR(x,y)

0 1

0 0 1

1 1 1

A Physical Protocol
Alice prepares 4 boxes Bxy corresponding to 4
possible input scenarios, and 4 padlocks/keys Kx=0,
Kx=1, Ky=0 and Ky=1

Inside Bxy=ab she places the bit OR(a,b) and locks it
with two padlocks Kx=a and Ky=b (need to open both
to open the box)

She un-labels the four boxes and sends them in
random order to Bob. Also sends the key Kx=a
(labeled only as Kx).

So far Bob gets no information

Bob “obliviously picks up” Ky=b, and tries the two
keys Kx,Ky on the four boxes. For one box both
locks open and he gets the output.

0

1

1

1

00

11

01

10

0 1

0 0 1

1 1 1

0 0

0

0

1

1 b

1 0

0 1

1 1

F

Secure?

For curious Alice: only influence from Bob is when
he picks up his key Ky=b

But this is done “obliviously”, so she learns
nothing

For curious Bob: What he sees is predictable (i.e.,
can be simulated), given the final outcome

What Bob sees: His key opens Ky in two boxes,
Alice’s opens Kx in two boxes; only one random
box fully opens. It has the outcome.

Note when y=1, cases x=0 and x=1 appear same

0 1

0 0 1

1 1 1

0

1

1

1

0

0

1

1 b
F

A Physical Protocol

Larger Circuits

00 1 1

0 1
Idea: For each gate in the circuit Alice will
prepare locked boxes, but will use it to keep
keys for the next gate

For each wire w in the circuit (i.e., input wires,
or output of a gate) pick 2 keys Kw=0 and Kw=1

0 1 0 1 0 1

0 1 0 10 1

Larger Circuits

For each gate G with input wires (u,v) and output
wire w, prepare 4 boxes Buv and place Kw=G(a,b) inside
box Buv=ab. Lock Buv=ab with keys Ku=a and Kv=b

Give to Bob: Boxes for each gate, one key for each of
Alice’s input wires

Obliviously: one key for each of Bob’s input wires

Boxes for output gates have values instead of keys

00 1 1

0 1

bb
b

F

F

F

Idea: For each gate in the circuit Alice will
prepare locked boxes, but will use it to keep
keys for the next gate

For each wire w in the circuit (i.e., input wires,
or output of a gate) pick 2 keys Kw=0 and Kw=1

Larger Circuits
Evaluation: Bob gets one key for each input wire of a
gate, opens one box for the gate, gets one key for the
output wire, and proceeds

Gets output from a box for the output gate

Security similar to before

Curious Alice sees nothing

Bob can simulate his view given final output: Bob could
prepare boxes and keys (stuffing unopenable boxes
arbitrarily); for an output gate, place the output bit in
the box that opens

00 1 1

0 1

bb
b

F

F

F

Garbled Circuit
That was too physical!

Yao’s Garbled circuit: boxes/keys replaced by Symmetric Key
Encryption (specifically, using a Pseudorandom Function or PRF)

EncK(m) = PRFK(index) ⊕ m, where index is a wire index
(distinct for different wires fanning-out of the same gate)

Double lock: EncKx(EncKy(m))

PRF in practice: a block-cipher, like AES

Uses Oblivious Transfer for strings: For passive security, can just
repeat bit-OT several times to transfer longer keys

Garbled Circuit
One issue when using encryption instead of locks

Given four doubly locked boxes (in random order) and two
keys, we simply tried opening all locks until one box fully
opened

With encryption, cannot quite tell if a box opened or not!
Outcome of decryption looks random in either case.

Simple solution: encode the keys so that wrong decryption
does not result in outputs that look like valid encoding of keys

Better solution: For each wire, the 0 & 1 keys
have distinct “shape” labels, assigned at random.
Each locked box marked with the shape of
the two keys needed to unlock it. 00 1 1

0 1

Defining MPC

A simple example
Recall the Dutch flower auction protocol

Count down from 100

At each even round Alice announces whether
her bid equals the current count; at each odd
round Bob does the same

Stop if a party says yes

Perfectly secure against
active adversary as well

But is that ideal enough?

Attack on
Dutch Flower Auction

Alice and Bob are taking part in two auctions

Alice’s goal: ensure that Bob wins at least one auction with some
bid z, and the winning bid in the other auction ∈ {z,z-1}

Easy in the protocol: run the two protocols lockstep. Wait till Bob
says yes in one. Done if Bob says yes in the other simultaneously.
Else Alice will say yes in the next round.

Why is this an attack?

Impossible for Alice to ensure this in IDEAL!

Attack on
Dutch Flower Auction

Alice’s goal: ensure that Bob wins at least one auction with some
bid z, and the winning bid in the other auction ∈ {z,z-1}

Impossible to ensure this in IDEAL!

Alice can get a result in one session, before running the other.
But what should she submit as her input x in the first one?

Trouble if x≠0, because she could win (i.e., z-1=x) and Bob’s
input in the other session may be ≠ x+1

Trouble if x=0, because Bob could win with input 1 (i.e., z=1)
and in the other session his input > 1

Standalone security definition does not ensure security when
composed

Different modes of composition

Sequential composition: protocols executed one after the
other. Adversary communicates with the environment between
executions.

Concurrent composition: multiple sessions (typically of the
same protocol) are active at the same time, and the
adversary can coordinate its actions across the sessions

Composition Issues

REAL
IDEAL

Concurrent Executions

EnvEnv

F

F

F

∀

∃ s.t.

∀
output of
is distributed
identically in
REAL and IDEAL

Standalone security definition does not ensure security when
composed

Different modes of composition

Sequential composition: protocols executed one after the
other. Adversary communicates with the environment between
executions.

Concurrent composition: multiple sessions (typically of the
same protocol) are active at the same time, and the
adversary can coordinate its actions across the sessions

Also, subroutine calls

Composition Issues

REAL
IDEAL

A “REAL” protocol in which parties access (another) IDEAL protocol

Subroutines

F

EnvEnv

∀

∃ s.t.

∀
output of
is distributed
identically in
REAL and IDEAL

F

Standalone security definition doesn’t ensure security when
composed

Different modes of composition

Sequential composition: protocols executed one after the
other. Adversary communicates with the environment between
executions. (OK by standalone security definition.)

Concurrent composition: multiple sessions (typically of the
same protocol) are active at the same time, and the
adversary can coordinate its actions across the sessions

Also, subroutine calls

Universal composition: Executed in an arbitrary environment
which may include other protocol sessions (possibly calling
this session as a subroutine). Live communication between
environment and adversary.

Composition Issues

World 1
Env

F

F

Universal Composition
Replace protocol with which is as secure, etc.

F

World 2
Env

F

F

EnvEnv

F

F

Universal Composition

World 3World 1

Replace protocol with which is as secure, etc.
F

EnvEnv

F

F

Universal Composition

Hope: resulting
system is as secure
as the one we
started with World 4World 1

Replace protocol with which is as secure, etc.
F

Universal Composition
Start from world A (think “IDEAL”)

Repeat (for any poly number of times):

For some 2 “protocols” (that possibly make use of ideal
functionalities) I and R such that R is as secure as I,
substitute an I-session by an R-session

Say we obtain world B (think “REAL”)

UC Theorem: Then world B is as secure as world A

Gives a modular implementation of the IDEAL world

