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1 Advanced Cryptographic Primitives

So far in the course, we have seen cryptographic primitives such as secret key
encryption, public key encryption, digital signatures etc. These are widely used
in practice. Today, we will discuss encryption primitives which go beyond public
key encryption. We start with identity based encryption (IBE), then move on
to a richer generalization called attribute based encryption (ABE), and finally
discuss functional encryption (FE), which captures IBE, ABE and much more.

1.1 Definitions and Basic Properties

Identity Based Encryption (IBE)

Consider the following scenario: there is a large organization, and every person
at this organization has a unique identity. Typically, if anyone wants to email
a particular person at this organization, they would need the person’s public
key. As a result, the organization needs to maintain everyone’s public keys,
which could be a key management headache. Using identity based encryption,
one can encrypt using only the person’s identity (and some master public key
which is common for the whole organization). Each person will have a secret
key corresponding to his/her identity, which will allow him/her to decrypt only
the ciphertexts meant for his/her identity. This requires a master authority who

†These notes are meant to be a self-contained summary of the talks on advanced encryption
primitives. I have not proof-read the notes, and therefore it might contain some minor typos and
mistakes. Please feel free to contact in case something is unclear/looks incorrect.
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1. Advanced Cryptographic Primitives

samples a master secret key and a master public key. The master secret key can
be used to generate a secret key for any identity.
Below we introduce the syntax formally.

Syntax. An IBE scheme for identity space ID and message spaceM consists
of four algorithms with the following syntax.

• Setup (1λ) ∶ The setup algorithm outputs the master public key mpk and
the master secret key msk.

• Enc (mpk, id, m) ∶The encryption algorithm takes as input themaster public
key, identity id ∈ ID, and message m ∈M. It outputs a ciphertext ctid.

• KeyGen (msk, id) ∶ The key generation algorithm takes as input the master
secret key msk, and an identity id ∈ ID, and outputs a secret key skid.

• Dec (skid, ctid) ∶ The decryption algorithm takes as input a secret key for
identity id, ciphertext ctid, and outputs y ∈M∪ {⊥}.

Correctness. Here, we define perfect correctness (statistical correctness can
be defined analogously). We require that for all id ∈ ID, m ∈ M, λ ∈ N,
(mpk,msk)← Setup (1λ), ctid ← Enc (mpk, id, m), skid ← KeyGen (msk, id),

Dec (skid, ctid) = m.

Security. First, let us informally discuss what properties we need from a secure
IBE system. Suppose a ciphertext ctid is meant for identity id. If an attacker does
not have the secret key for identity id, then it should learn no information about
the underlying message. Note that the attacker may collude with other users,
and have secret keys for many other identities. Naturally, we require that given
many secret keys, it should be hard to derive a secret key for a new identity.
We will now discuss how to formalize the above intuition. The following are
some candidate definitions that were proposed during the lecture, we discuss the
shortcomings in each of these definitional attempts. Let us assume the message
space is {0, 1}.

1. For every identity id, the following distributions are computationally in-
distinguishable:

{Enc(mpk, id, 0) ∶ (mpk,msk)← Setup}
≈c

{Enc(mpk, id, 1) ∶ (mpk,msk)← Setup}

This definition does not capture the secret keys that the adversary can
obtain, and hence is too weak to be used.

2. For every identity id, the following distributions are computationally in-
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distinguishable:

{( msk,
Enc(mpk, id, 0) ) ∶ (mpk,msk)← Setup}

≈c

{( msk,
Enc(mpk, id, 1) ) ∶ (mpk,msk)← Setup}

In this definition, the adversary gets the master secret key together with
the challenge ciphertext. This definition is too strong, as the adversary can
use msk to derive a secret key for id, and therefore decrypt the challenge
ciphertext.

3. For every identity id, the following distributions are computationally in-
distinguishable:

{( {skid′}id′≠id ,
Enc(mpk, id, 0) ) ∶ (mpk,msk)← Setup (1λ)

skid′ ← KeyGen (msk, id′) }

≈c

{( {skid′}id′≠id ,
Enc(mpk, id, 1) ) ∶ (mpk,msk)← Setup (1λ)

skid′ ← KeyGen (msk, id′) }

This definition is almost correct, the only issue here is that the identity
space can be exponential in the security parameter, in which case the
adversary receives an exponential-sized input. Instead of giving secret
keys for all identities other than id, we can allow the adversary to query
for secret keys corresponding to any identity of its choice. We formalize
this definition below, using a security game between a challenger and an
adversary.

Definition 1.1. An IBE scheme is said to be CPA secure if, for any p.p.t. adversary A,
there exists a negligible function negl such that for all λ ∈ N, the advantage of A in the
IBE security game (defined in Figure 1) is at most negl(λ).
An IBE scheme is said to be selectively secure if any p.p.t. adversary has negligible
advantage in the selective CPA security game, which is identical to the IBE security
game, except that the adversary must send its challenge identity at the start of the
experiment (before receiving the master public key). ◊
Note that the above definition only guarantees that the ciphertext hides the
message, the ciphertext may not hide the identity.

Exercise 1.1. Propose a security game which captures IBE schemes where the
ciphertext hides both the message and identity. Such IBE schemes are called
anonymous IBE schemes.

An application of IBE: CCA secure PKE. Canetti, Halevi and Katz [CHK04]
showed that any IBE scheme can be used to build a CCA secure PKE scheme.
Below, we first present a CCA-1 secure PKE scheme using an IBE scheme as a
building block.
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CPA security game for IBE

• (Setup Phase) Challenger samples (mpk,msk) ← Setup (1λ
) and sends

mpk to the adversary.
• (Pre-challenge Query Phase) Adversary makes polynomially many secret

key queries. For each queried identity id, the challenger sends skid ←

KeyGen (msk, id).
• (Challenge Phase) Adversary sends a challenge identity id∗ (not equal

to any of the identities queried in the pre-challenge phase), and two
messages m0, m1. Challenger samples b ← {0, 1} and sends ct∗ ←
Enc (mpk, id∗, mb).

• (Post-challenge Query Phase) Adversary makes polynomially many se-
cret key queries. For each queried identity id ≠ id∗, the challenger sends
skid ← KeyGen (msk, id).

• Adversary finally sends it guess b′. The adversary wins if b = b′, and the
advantage of the adversary is Pr [Adversary wins]− 1/2.

Figure 1: IBE security is captured using a security game between a challenger
and an adversary. The adversary receives polynomially many secret keys, cor-
responding to identities of its choice. At the end, it must distinguish between
encryption of m0 and m1 for the challenge identity.

Construction 1.2 (CCA-1 secure PKE using IBE [CHK04]). Let ID =
{0, 1}λ, and let (IBE.Setup, IBE.Enc, IBE.KeyGen, IBE.Dec) be an IBE scheme
for identity space ID and message spaceM. We will construct a CCA-1 secure
encryption scheme with message spaceM.

• Setup (1λ) ∶ The setup algorithm samples (ibe.mpk, ibe.msk) ←
IBE.Setup (1λ), and sets pk = ibe.mpk, sk = ibe.msk.

• Enc (pk = ibe.mpk, m) ∶ The encryption algorithm samples id← {0, 1}λ,
and computes ibe.ct ← IBE.Enc (ibe.mpk, id, m). The ciphertext is
(id, ibe.ct).

• Dec (sk = ibe.msk, ct = (id, ibe.ct)) ∶ The decryption algorithm
first computes ibe.sk ← IBE.KeyGen (ibe.msk, id). It outputs
IBE.Dec (ibe.sk, ibe.ct).

◊

Correctness of the PKE scheme follows from the correctnes of the IBE scheme.
Below, we describe a reduction algorithm, which proves CCA-1 security of the
scheme assuming the IBE scheme is CPA secure.

Claim 1.3. Suppose there exists a p.p.t. adversary that breaks CCA-1 security of the
above scheme. Then there exists a p.p.t. reduction algorithm that breaks the CPA security
of the IBE scheme.

Proof. The reduction algorithm receives the master public key from the IBE chal-
lenger, which it forwards to the CCA-1 adversary. Next, it receives polynomially
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many decryption queries. For each decryption query of the form (idi, ibe.cti), the
reduction algorithm sends a secret key query to the IBE challenger, and receives
ibe.ski. It uses ibe.ski to decrypt ibe.cti. Finally, after all decryption queries, the
CCA-1 adversary sends two challengemessages m0, m1. The reduction algorithm
samples a uniformly random identity id∗. With overwhelming probability, this
identity is not equal to any of the queried identities. It sends id∗ together with
challenge messages m0, m1, and receives a challenge ciphertext ct∗. It forwards
(id∗, ct∗) to the adversary, and forwards the adversary’s response to the IBE
challenger.

The above scheme can be upgraded to a full CCA-secure PKE scheme using one-
time signatures. The only difference is that the encryption algorithm samples a
signing and verification key, and the verification key is used as the identity for en-
cryption. After computing the IBE ciphertext, the encryption algorithm computes
a signature on the ciphertext. The signature ensures that in all post-challenge
decryption queries, the verification key is not the same as the verification key in
the challenge ciphertext.

Exercise 1.2. Show that any IBE scheme can be used to build a secure signature
scheme.

Attribute Based Encryption (ABE)

Attribute Based Encryption is a generalization of IBE which captures more fine-
grained access control on the data. Here, we can encrypt messages using any policy.
Users will have certain attributes, and they will get secret keys corresponding
to their attributes. The secret key for attribute att can decrypt a ciphertext for
policy f if f (att) = 1.
As an example, consider a universitywhere everyone has the following attributes:
name,department ∈ {CSE,EE,Math},category ∈ {student,staff,faculty}. Sup-
pose we want to encrypt a message that can be decrypted by any student in the
CSE department, or any faculty member. Then, we can encrypt this message
using the policy

(department = CSE∧ category = student)∨ (category = faculty) .

Note that IBE is a special case of ABE where the policies are implemented using
equality check. AnABE scheme is defined for a class of policies. For simplicity, we
will think of policies as circuits, and attributes as bit-vectors. One can modify the
syntax appropriately for other classes of policies and attributes. When policies
are tied to ciphertexts, we call it ciphertext-policy ABE (CP-ABE). One can also
define ABE where policies are tied to the secret keys, this is called key-policy ABE
(KP-ABE). Below, we define the syntax for CP-ABE.

Syntax. An ciphertext-policy ABE scheme for attribute space {0, 1}λ, policy
space C = {C ∶ {0, 1}λ → {0, 1}}, and message spaceM consists of four algo-
rithms with the following syntax.

• Setup (1λ) ∶ The setup algorithm outputs the master public key mpk and
the master secret key msk.
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• Enc (mpk, C, m) ∶ The encryption algorithm takes as input themaster public
key, circuit C ∈ C, and message m ∈M. It outputs a ciphertext ctC.

• KeyGen (msk, att) ∶ The key generation algorithm takes as input the master
secret key msk, and an attribute vector att ∈ {0, 1}λ, and outputs a secret
key skatt.

• Dec (skatt, ctC) ∶ The decryption algorithm takes as input a secret key for
attribute att, ciphertext ctC, and outputs y ∈M∪ {⊥}.

Correctness. Here, we define perfect correctness (statistical correctness can
be defined analogously). We require that for all λ ∈ N, C ∈ C, att ∈ {0, 1}λ,
m ∈M, (mpk,msk) ← Setup (1λ), ct ← Enc (mpk, C, m), sk ← KeyGen (msk, att),
if C(x) = 1, then Dec (sk, ct) = m.

Security. The security definition is similar to the IBE security definition.

CPA security game for CP-ABE

• (Setup Phase) Challenger samples (mpk,msk) ← Setup (1λ
) and sends

mpk to the adversary.
• (Pre-challenge Query Phase) Adversary makes polynomially many secret

key queries. For each queried identity att, the challenger sends skatt ←
KeyGen (msk, att).

• (Challenge Phase) Adversary sends a challenge policy C (such that
C(att) = 0 for any attribute att queried in the pre-challenge phase),
and two messages m0, m1. Challenger samples b ← {0, 1} and sends
ct∗ ← Enc (mpk, C, mb).

• (Post-challenge Query Phase) Adversary makes polynomially many se-
cret key queries. For each queried attribute att, C(att) = 0, the challenger
sends skatt ← KeyGen (msk, att).

• Adversary finally sends it guess b′. The adversary wins if b = b′, and the
advantage of the adversary is Pr [Adversary wins]− 1/2.

Figure 2: The adversary receives polynomially many secret keys, corresponding
to attributes of its choice. At the end, it must distinguish between encryption of
m0 and m1 for the challenge policy C, where C(x) = 0 for all attributes x queried
by the adversary.

Definition 1.4. An ABE scheme is said to be CPA secure if, for any p.p.t. adversary A,
there exists a negligible function negl such that for all λ ∈ N, the advantage of A in the
ABE security game (defined in Figure 2) is at most negl(λ).
An ABE scheme is said to be selectively secure if any p.p.t. adversary has negligible
advantage in the selective CPA security game, which is identical to the ABE secu-
rity game, except that the adversary must send its challenge policy at the start of the
experiment (before receiving the master public key). ◊
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Functional Encryption (FE)

Finally, we discuss the notion of functional encryption. This is the most expres-
sive encryption primitive. Here, anyone can encrypt a message using the master
public key. Different users can learn different functions of the message by de-
crypting the ciphertext using a secret key corresponding to a function f . As
in IBE and ABE, the secret keys are generated by a master authority using a
master secret key. Informally, we require that if an adversary has secret keys
for functions f1, f2, . . . , ft, and has an encryption of x, then it should learn only
f1(x), f2(x), . . . , ft(x) and nothing else.

Syntax. An FE scheme for input space Dλ, function space Cλ = {C ∶ Dλ →Rλ}
consists of four algorithms with the following syntax.

• Setup (1λ) ∶ The setup algorithm outputs the master public key mpk and
the master secret key msk.

• Enc (mpk, x) ∶ The encryption algorithm takes as input the master public
key, input x ∈ Dλ. It outputs a ciphertext ct.

• KeyGen (msk, C) ∶ The key generation algorithm takes as input the master
secret key msk, and a function C, and outputs a secret key skC.

• Dec (skC, ct) ∶ The decryption algorithm takes as input a secret key for
function C, ciphertext ct, and outputs y ∈Rλ ∪ {⊥}.

Correctness. We require that for all λ ∈ N, C ∈ Cλ, x ∈ Dλ, (mpk,msk) ←
Setup (1λ), ct← Enc (mpk, x), skC ← KeyGen (msk, C), Dec (skC, ct) = C(x).

Security. The indistinguishability-based definition for functional encryption
is very similar to the ABE definition. The adversary sends two strings x0, x1 as
the challenge messages, and receives encryption of one of them. It is allowed
secret key queries for any function f , as long as f (x0) = f (x1). Finally, after
polynomially many queries, the adversary must guess whether x0 or x1 was
encrypted. Note that we only require that the ciphertext hides the message x,
the secret key need not hide the circuit.

Exercise 1.3. Show that FE for circuits implies ABE for circuits.

Exercise 1.4. Single-query FE security: consider a weaker security game where
the adversary sends two messages x0, x1 and a circuit C such that C(x0) =
C(x1). It receives the master public key mpk, encryption of xb and a secret key
for circuit C. The adversary must guess whether x0 was encrypted or x1.
Propose an FE scheme that is secure with regard to this security game.
(Hint: use garbled circuits and public key encryption.)
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1.2 Constructions

In this section,we present various constructions of IBE/ABE schemes from lattice-
based assumptions. We will first present a toolkit for lattice-based cryptography,
and then see how to use these tools for building advanced encryption primitives
(we will start with public key encryption, then discuss two constructions of IBE,
and finally an ABE scheme for inner products).

Toolkit for Lattice-Based Cryptography

Throughout this section, all computations are modulo q, where q is a large
modulus. We will use the following parameters for our discussion. Let n denote
the security parameter, m = n2 and q = Θ (2

√
n). We say that a number x ∈ Zq is

small if x ≤ √q, otherwise we say that x is large.

The Leftover Hash Lemma. Consider the following experiment: sample a uni-
formly randommatrix A ←Zn×m

q , a uniformly random binary vector r ← {0, 1}m.
Given A and A ⋅ r, can we learn any information about r? The following lemma
says that A and A ⋅ r are statistically indistinguishable from a uniformly ran-
dom matrix and a uniformly random vector (and therefore there is negligible
information about r).

Lemma 1.5. Let m = n2, and let q = Θ (2
√

n) be a prime. Then the following distribu-
tions are statistically indistinguishable:

{(A, A ⋅ r) ∶ A ←Zn×m
q

r ← {0, 1}m } ≈s {(A, u) ∶ A ←Zn×m
q

u ←Zn
q

}

The above lemma holds as long as r is sampled from a distributionwith sufficient
min-entropy.

The Learning with Errors Assumption. We will use the following version of
the Learning with Errors (LWE) assumption.

Computational Problem1. Letm = n2, let q = Θ (2
√

n) be a prime, and B = O (q1/3).
Then the following distributions are computationally indistinguishable:

{(A, s⊺ ⋅A + e) ∶ A ←Zn×m
q

s ←Zn
q , e ← [−B, B]m } ≈c {(A, u) ∶ A ←Zn×m

q
u ←Zm

q
}

A few observations about the LWE problem/assumption:

• if the ‘error vector’ e was sampled uniformly at random from Zm
q , then

these two distributions would be identical.

• Without the error vector, one can easily distinguish between these two
distributions by using Gaussian elimination. Somewhat surprisingly, when
the error vector is added, we don’t have any polynomial time algorithm
for this problem. Any such algorithm would end up resolving decades old
computational problems.
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However, a computationally unbounded adversary can distinguish be-
tween these two distributions.

• The LWE problem seems to be resilient against quantum algorithms too!
This makes it one of the leading candidates for post-quantum cryptography
(cryptography that is secure in the presence of quantum adversaries).

Finding short preimages. Let v ∈ Zn
q be any vector, and A a uniformly random

matrix. Given A and v, one can easily find a vector w such that A ⋅ w = v
(there are several such vectors w). However, the problem becomes interesting
if we also require the preimage vector to have small entries. We will call such
a vector w a short preimage of v wrt A. The following exercise shows that it is
computationally hard to find short preimages (assuming the LWE assumption
holds) wrt uniformly random matrices.

Exercise 1.5. Consider the following experiment between a challenger and an
adversary A, with security parameter n, m = n2 and q = Θ (q

√
n):

The adversary sends a vector v ←Zn
q to the challenger. The challenger samples

A ← Zn×m
q and sends A to A. The adversary sends a vector w, and wins if

A ⋅w = v and all entries of w are smaller than q1/4.
Show that if there exists a p.p.t. adversary that can win the above experiment
with non-negligible probability, then there exists a p.p.t. adversary B that breaks
the LWE assumption with non-negligible probability.

However, it is easy to find short preimages wrt special, structured matrices.
One such structured matrix (which will be very useful in our lattice-based
construction) is the gadget matrix G defined below. Let g denote the vector
[1 2 22 . . . 2⌈log(q)⌉], and let G = I⊗ g.

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

g 0 . . . 0
0 g . . . 0
⋮ ⋮ ⋱ ⋮
0 0 . . . g

⎤⎥⎥⎥⎥⎥⎥⎥⎦

The above matrix G has dimensions n × n log(q). We will pad it with columns
of zeroes to make it an n ×m matrix. Note that it is easy to find short preimages
wrt G.

Exercise 1.6. Show that there exists an efficient algorithm such that, for any
v ∈ Zn

q , the algorithm outputs a vector w ∈ Zm
q such that G ⋅w = v and w has

binary entries.

Using G, we can sample random looking matrix, together with some secret
information that we call a trapdoor, such that the trapdoor allows us to compute
a short preimage for any vector. This sampler outputs matrices of the form
[A ∣ A ⋅R +G], where R is a matrix with binary entries and is the trapdoor for
matrix A.
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Exercise 1.7. Let R be a binary matrix, and A = [A′ ∣ A′ ⋅R +G]. Show that
there exists an efficient algorithm that, given R and any v ∈ Zn

q , samples a vector
w such that A ⋅w = v and w has small entries.

The trapdoor for matrix A can also be used to sample short preimages of any
vector v, wrt any matrix of the form [A ∣ B]. Similarly, it can also be used to
sample short preimages of any v, wrt any matrix of the form [B ∣ B ⋅ S +A]
where S is a matrix with binary entries.

Exercise 1.8. Let A = [A′ ∣ A′ ⋅R +G]. Show that there exists an efficient
algorithm that uses R, and for any B ∈ Zn×m

q , S ∈ {0, 1}m×m and v ∈ Zn
q , it

samples vectors w1 and w2 with small entries such that [A ∣ B] ⋅w1 = v and
[B ∣ B ⋅ S +A] ⋅w2 = v.

With a little more work, we can show that the preimages for a random vector
looks like a random low-norm vector from an appropriate (fixed) distribution.
These results are formally summarised in the following lemma.

Lemma 1.6. There exist efficient algorithmsTrapGen, SamplePre,ExtendRight,ExtendLeft,
polynomial p and an efficiently samplable distribution D, with the following syntax and
properties.

• TrapGen (1n, 1m): takes as input the matrix dimensions n, m and outputs A ∈
Zn×m

q together with trapdoor TA.

• SamplePre (A, TA, v): takes as input a matrix A together with its trapdoor TA,
and a vector v ∈ Zn

q . It outputs a vector w ∈ Zm such that A ⋅ w = v and
∥w∥∞ ≤ p(n)

• ExtendRight (A, TA, B, v): takes as input a matrix A with its trapdoor TA, a
matrix B and a vector v. Let C = [A ∣ B]. It outputs a vector w ∈ Zm such that
C ⋅w = v and ∥w∥∞ ≤ p(n)

• ExtendLeft (A, TA, B, S, v): takes as input a matrix A with its trapdoor TA, a
matrix B, a binary matrix S and a vector v. Let C = [B ∣ B ⋅ S +A]. It outputs a
vector w ∈ Zm such that C ⋅w = v and ∥w∥∞ ≤ p(n).

These algorithms satisfy the following properties:

1. {A ∶ (A, TA)← TrapGen (1n, 1m)} ≈s {A ∶ A ←Zn×m
q }

2. For any (A, TA)← TrapGen (1n, 1m),

{w ∶ v ←Zn
q , w ← SamplePre (A, TA, v)} ≈s {w ∶ w ← D}

3. For any (A, TA)← TrapGen (1n, 1m), B ∈ Zn×m
q ,

{w ∶ v ←Zn
q , w ← ExtendRight (A, TA, B, v)} ≈s {w ∶ w ← D}
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4. For any (A, TA)← TrapGen (1n, 1m), B ∈ Zn×m
q , S ∈ {0, 1}m×m,

{w ∶ v ←Zn
q , w ← ExtendLeft (A, TA, B, S, v)} ≈s {w ∶ w ← D}

Public Key Encryption

Construction 1.7 (PKE Construction: dual-Regev). The dual-Regev en-
cryption scheme is a bit-encryption scheme, closely related to Regev’s PKE
scheme [Reg09]. The algorithms are described below.

• Setup (1n): The setup algorithm samples A ← Zn×m
q , r ← {0, 1}m. The

public key is (A, b = A ⋅ r) and the secret key is r.

• Enc (pk = (A, b) , m ∈ {0, 1}): The encryption algorithm samples s ←
Zn

q , e ← [−B, B]m, e′ ← [−B, B], and sets ct = s⊺ ⋅A + e, ct′ = s⊺ ⋅ b +
e′ +m ⋅ (q/2).

• Dec (sk = r, ct = (ct1, ct′)) ∶ The decryption algorithm computes z = ct′ −
ct ⋅ r. If ∣z − q/2∣ ≤ √q, then decryption outputs 1, else it outputs 0.

◊

Correctness is immediate. For proving security, we first use Lemma 1.5 to switch
the public key to a uniformly random matrix A and a uniformly random vector
b. Next, we use the LWE assumption to argue that the ciphertext components
(ct, ct′) look uniformly random.

Identity Based Encryption

Next, we present two lattice-based IBE constructions. The first construction
is by Gentry, Peikert and Vaikuntanathan [GPV08], and is proven secure in
the random oracle model. The second one is by Cash, Hofheinz, Peikert and
Kiltz [CHKP10], and is proven secure in the standardmodel. Both these construc-
tions have some common structure. In both schemes, the encryption algorithm
uses the master public key mpk and identity id to derive a dual-Regev public
key pkid, which is then used for dual-Regev encrypting the message.

Construction 1.8 (IBE Construction [GPV08]). This lattice-based IBE con-
struction is proven secure in the random oracle model. Let H ∶ {0, 1}∗ →Zn

q be
a hash function (to be modeled as a random oracle in the proof).

• Setup (1n): The setup algorithm samples (A, TA) ← TrapGen (1n, 1m),
and sets mpk = A, msk = TA.

• Enc (mpk = A, id, m): The encryption algorithm computes v = H(id),
and sets pkid = (A, v). It then uses pkid for dual-Regev encryption of
m. That is, it chooses s ← Zn

q , e ← [−B, B]m, e′ ← [−B, B] and sets
ct = s⊺ ⋅A + e, ct′ = s⊺ ⋅ v + e′ +m ⋅ (q/2).

11
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• KeyGen (msk = TA, id): The key generation algorithm computes v =
H(id), then samples r ← SamplePre (A, TA, v). It outputs skid = r.

• Dec (skid, ctid = (ct, ct′)): The decryption is identical to dual-Regev de-
cryption. It computes z = ct′ − ct ⋅ skid. If ∣z − q/2∣ ≤ √q, then it outputs
1, else it outputs 0.

◊

Correctness is identical to the dual-Regev correctness. The security proof is in the
random oracle model, where the hash function is modeled as a random oracle.
Let us work with a simplified security game which conveys the main ideas
involved in the proof. In this simplified security game, the adversary always
submits the all-zeroes string 0 as the challenge identity, andmakes a single secret
key query for the all-ones string 1.

Simplified game for IBE in random oracle model

• Adversary sends the challenge identity 0.
• Challenger samples (A, TA), samples v and sets H(0) = v. It then samples

a bit b, s ← Zn
q , noise e, e′ and sets ct = (s⊺ ⋅A + e, s⊺ ⋅ v + e + b(q/2)). It

sends mpk = A, H(0) and ct.
• Adversary sends secret key query for 1. The challenger samples v′ ← Zn

q ,
sets H(1) = v′, and sk ← SamplePre (A, TA, v′). It sends H(1) and sk to
the adversary.

• Adversary finally sends it guess b′.

Figure 3: In this simplified security game, the adversary makes only one secret
key query. Moreover, both the challenge identity and secret key query are fixed
in advance.

Claim 1.9. Suppose there exists a p.p.t. adversary A that wins the simplified IBE
security game (described in Figure 3) with non-negligible advantage. Then there exists
a p.p.t. adversary B that breaks the CPA security of dual-Regev encryption scheme with
non-negligible advantage.

Proof idea: The reduction algorithm receives the public key pk = (A, v) and the
challenge ciphertext ct from the dual-Regev challenger. Since it must use the
IBE adversary, it must derive the IBE master public key from pk, and the IBE
challenge ciphertext from ct. A natural choice is to set mpk = A, H(0) = v and
challenge ciphertext as ct. However, the reduction also needs to give a secret
key for 1, and this requires the trapdoor for A (which the reduction does not
have). The main idea in this proof is to program the random oracle. Instead of
picking a uniformly random vector for H(1), the reduction can pick a short
vector w′ and set H(1) = A ⋅w′. Using the properties of trapdoor sampling, we
get that sampling a uniformly random vector v′ and then sampling its preimage
w′ is indistinguishable from sampling a low-norm vector w′ and then setting
v′ = A ⋅w′.

12
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Proof. The formal proof goes via a sequence of hybrids.

Hybrid 0: same as simplified security game.
Hybrid 1: This is similar to the simplified security game, except the response to
secret key query. Here, the challenger samples w′ ← D, sets H(1) = A ⋅w′, and The distribution D

is defined in Lemma
1.6.

the secret key for 1 is w′.

Using Property 2 of trapdoor sampling, it follows that Hybrid 0 andHybrid 1 are
statistically indistinguishable. Therefore, if an adversary succeeds in Hybrid 0,
then it also succeeds in Hybrid 1 with non-negligible advantage. The reduction
algorithm, on receiving pk = (A, v) and ct, sets mpk = A, H(0) = v and the IBE
challenge ciphertext as ct. On receiving the secret key query, it samples w′ ← D,
sets H(1) = A ⋅w′, and the secret key for 1 is w′. Finally, the adversary sends its
guess, which the reduction forwards to the dual-Regev PKE challenger.

The above construction and proof crucially use the programming of random
oracle. Next, we present an IBE construction in the standard model. The key
ideas are similar: using the master public key and identity, we will derive a
dual-Regev public key and use it for encrypting the message.

Construction 1.10 (IBE Construction in the standard model [CHKP10]).
This IBE construction is proven secure in the standard model. Let ID = {0, 1}`
denote the identity space.

• Setup (1n): The setup algorithm samples (A, TA) ← TrapGen (1n, 1m),
samples 2` matrices {Ai,b}i∈[`],b∈{0,1}, vector v ← Zn

q and sets mpk =
(A,{Ai,b}i,b , v), msk = TA.

• Enc (mpk = A, id, m): The encryption algorithm sets Aid =
[A ∣ A1,id1

∣ . . . ∣ A`,id`
], and sets pkid = (Aid, v). It then uses pkid for

dual-Regev encryption of m. That is, it chooses s ← Zn
q , e ← [−B, B]m,

e′ ← [−B, B] and sets ct = s⊺ ⋅Aid + e, ct′ = s⊺ ⋅ v + e′ +m ⋅ (q/2).

• KeyGen (mpk = (A,{Ai,b}i,b , v) ,msk = TA, id): The key generation
algorithm sets Bid = [A1,id1

∣ . . . ∣ A`,id`
], then samples r ←

ExtendRight (A, TA, Bid, v). It outputs skid = r.
Note that [A ∣ Bid] ⋅ r = v and r has small entries.

• Dec (skid, ctid = (ct, ct′)): The decryption is identical to dual-Regev de-
cryption. It computes z = ct′ − ct ⋅ skid. If ∣z − q/2∣ ≤ √q, then it outputs
1, else it outputs 0.

◊

Correctness follows from the correctness of dual-Regev PKE scheme. For security,
we will again work with a simplified security game where the adversary sends
only one secret key query, and both the challenge identity and secret key query
are fixed in advance. This security game is described in Figure 4 below.

13
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Simplified game for IBE in standard model

• Adversary sends the challenge identity 0.
• Challenger samples (A, TA), matrices {Ai,b}i,b, samples v and setsmpk =

(A,{Ai,b}i,b , v). It sets A0 = [A ∣ A1,0 ∣ . . . ∣ A`,0]. It then samples a bit b,
s ← Zn

q , noise e, e′ and sets ct = (s⊺ ⋅A0 + e, s⊺ ⋅ v + e + b(q/2)).
It sends mpk and ct.

• Adversary sends secret key query for 1. The challenger sets B =

[A1,1 ∣ . . . ∣ A`,1], computes r ← ExtendRight (A, TA, B, v) and sends r
as the secret key for 1.

• Adversary finally sends it guess b′.

Figure 4: In this simplified security game, the adversary makes only one secret
key query. Moreover, both the challenge identity and secret key query are fixed
in advance.

Claim 1.11. Suppose there exists a p.p.t. adversary A that wins the simplified IBE
security game (described in Figure 4) with non-negligible advantage. Then there exists
a p.p.t. adversary B that breaks the CPA security of dual-Regev encryption scheme with
non-negligible advantage.

Proof idea: The reduction algorithm receives a public key and challenge ciphertext
from the PKE challenger. Using this, the reduction can set the IBE challenge
ciphertext. However, it must set themaster public key in such amanner that it can
respond to the secret key query. Note that half the master public key is already
set (given the public key sent by the PKE challenger). In the construction, the
secret keys are generated using ExtendRight. In the proof, these will be generated
using ExtendLeft, and this is where it will be useful to set the master public key
appropriately.

Proof. The reduction algorithm receives pk = ([A ∣ B1 ∣ . . . ∣ B`] , v) and ct from
the PKE challenger. For each i ∈ [`], it sets Ai,0 = Bi, samples Ri ← {0, 1}m×m and
sets Ai,1 = A ⋅Ri +G. The reduction sends mpk = (A,{Ai,b} , v) and challenge
ciphertext ct to the IBE adversary. For the secret key, the reduction must produce
a short vector r such that

[A ∣ A ⋅R1 +G ∣ . . . ∣ A ⋅R` +G] ⋅ r = v.

The reduction can compute such a vector using the trapdoor of G, and this is
indistinguishable from using ExtendRight. This completes our proof.

Exercise 1.9. Using the above ideas, show that Construction 1.10 satisfies
selective IBE security (with unbounded secret key queries).

Attribute Based Encryption for Inner-Products

Next, we present an ABE scheme, where the attributes and policies are vectors,
and decryption works only if their inner product is zero. The ABE scheme, pro-

14
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posed by Agrawal, Freeman and Vaikuntanathan [AFV11] has a neat structure
that can be extended to obtain ABE for general circuits (this was shown by Boneh
et al. [BGG+14].

Construction 1.12 (Inner-product ABE in the standard model [AFV11]).
Let T ∈ Z be some constant. For this ABE scheme, the attribute and policy space
is [−T, T]`, and policy y accepts attribute x if ⟨x, y⟩ = 0.

• Setup (1n): The setup algorithm samples (A, TA) ← TrapGen (1n, 1m),
samples ` matrices {Ai}i∈[`], vector v ← Zn

q and sets mpk =
(A,{Ai}i , v), msk = TA.

• Enc (mpk = A, x, m): The encryption algorithm sets Ax =
[A1 + x1G ∣ . . . ∣ A` + x`G]. It chooses s ← Zn

q , e0 ← [−n, n]m,

e ← [−q1/3, q1/3]`⋅m, e′ ← [−B, B] and sets ct0 = s⊺ ⋅ A + e0,
ct = s⊺ ⋅Ax + e, ct′ = s⊺ ⋅ v + e′ +m ⋅ (q/2).
Note that the noise for ct0 is drawn from [−n, n]m, while the noise for ct
is drawn from [−q1/3, q1/3]. This will be important for the security proof.

• KeyGen (mpk = (A,{Ai}i , v) ,msk = TA, y): The key generation algo-
rithm sets By = ∑i yi ⋅Ai, then samples r ← ExtendRight (A, TA, By, v).
It outputs sky = r.

Note that [A ∣ By] ⋅ r = v and r has small entries.

• Dec (sky, ctx = (ct0, ct, ct′)): The decryption algorithm parses the ci-
phertext ct = [ct1 ∣ . . . ∣ ct`]. Next, it computes c̃t = ∑i yi ⋅ cti, z =
ct′ − [ct0 ∣ c̃t] ⋅ sky. If ∣z − q/2∣ ≤ √q, then it outputs 1, else it outputs 0.

◊

For correctness, note that ([ct0 ∣ c̃t] , ct′) is dual-Regev encryption of the message
using public key ([A ∣ By] , v) (here, it is important that y has small entries).
Therefore, the correctness of this scheme follows from the correctness of dual-
Regev PKE scheme.

Security proof sketch. For security, the reductionmust useExtendLeft, and therefore
it is important to set the mpkmatrices appropriately. The scheme is selectively
secure (that is, the reduction receives the challenge attribute x before it sends
the master public key).
The reduction algorithm receives pk = (A, v) and challenge ciphertext (ct, ct′)
from the PKE challenger, and x from the ABE adversary, and must set mpk
and the challenge ciphertext appropriately. It samples ` binary matrices Ri ←
{0, 1}m×m, sets Ai = A ⋅Ri − xi ⋅G. The master public key is (A,{Ai}i , v). For the
challenge ciphertext, it samples error vectors e0 ← [−n, n]m, ei ← [−q1/3, q1/3]m

and sets ct∗0 = ct, ct∗i = ct ⋅Ri + ei, ct∗ = [ct1 ∣ . . . ∣ ct∗` ] and sends (ct0, ct∗, ct′) as
the ABE challenge ciphertext.
For the secret key queries, note that θy = ⟨x∗, y⟩ ≠ 0, thereforeBy = A ⋅(∑i yi ⋅Ri)+
θy ⋅G. Hence, we can use ExtendLeft to sample a preimage of v wrt [A ∣ By].
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