\
£ xotiC & \Oowev{u\ it

ADVANCED CRYPTOGRAPHIC PRIMITIVES

PART 3: INTRO TO CODE OBFUSCATION

ACM INDIA SUMMER SCHOOL (12 - 06 - 2024)

Venkata Koppula (IIT Delht)
kRvenkata@iitd.ac.in

mailto:kvenkata@iitd.ac.in

PROGRAM OBFUSCATION

Make programs maximally unintelligible

— [— R e e ——— _ —— — —_— === —— === == _—
- S — = - —

P p/

function NewObject()
{

var Oxfcad =

this.SayHello=tunction(msg) [“\x53\x6 1\x7 N\x48\x65\x6C\x6C\x6F", "\x48\x65\x6C

{ lert(msa) \X6C\xEF\x20\x57\x6F\x72\x6C\x64\x2E"|;
! gl; function NewObject({this[_Oxfcad[0]] =
function(_Oxbbefx2)}{alert(_Oxbbefx2)}}var obj= new

J

var obj=new NewObject();
obj.SayHello("Hello World.");

NewObject();obj.SayHello(_Oxfcad[1])

https://javascriptobfuscator.com/Javascript-Obfuscator.aspx

PROGRAM OBFUSCATION

Make programs maximally unintelligible

Obf : compiler mapping programs to programs

Function-Preserving

Let P’ = Obf(P). For all inputs x, P(x) = P'(x)

Efficiency
| Obf(P)| < poly(|P])
Obf must be efficient

PROGRAM OBFUSCATION

—— ——— — e ——— e — — —

—— = — = J — S — ==

Make programs maximally unintelligible

Having obfuscated code =~ having oracle access to code

V efficient A, 9 efficient S s.t. V programs P,
A(Obf(P)) ~ S*

SIRONG VBB OBFUSLATION: 100

N — e e ————— e o —_ e — e ——— e SN N i — e ————————— e ——————————— = —s———— A

Make programs maximally unintelligible

An obfuscated
program in hand
Is better than one

In the oracle!

Why so? | can run the
program on any

V efficient A, 3 efficient S s.t. V programs P, input, just like you. 9 Can you learn
A(Obf(P)) = S* X an unlearnable

< program using

= oracle access?

A(ODbf(P)) outputs Obf(P).

Cannot be simulated if P is unlearnable using oracle access .

An obfuscated
program in hand
IS better than one

Why so? | can run the in the oracle!

program on any

V efficient A with single-bit output , Input, just like you. N 4 Can you run a
. program on
J efticient §, s.t. V programs P . tself, using
A(Obf(P)) ~ SF = oracle access?

[Barak-Goldreich-Impagliazzo-Rudich-Sahai-Vadhan-Yang 01]

VBB OBFUSCATION: TOO STRONG

There exist programs that cannot be VBB obfuscated |

e ——— — ——— T = — = — —

Create a program P s.t. P(P) outputs
some ‘secret’ that cannot be learnt using
just oracle access.

V efticient A with single-bit output ,

J efficient S, s.t. V programs P ﬁ lfx - a
A(Obf(P)) ~ S P B,y (x) = y zf x(a) = p
1 otherwise

Ifa,ﬁ «~ {0,1}",

P (P) = '
By o By / cannot learn y with oracle access to P, By

VBB OBFUSCATION FOR CIRCUITS ? s é_

— e e e —— — _ e e —— e

What about obfuscatmg circuits?
Previous impossibility does not apply to circuits

Theorem: Assuming the existence of secure FHE,
there exist circuit families that cannot be

VBB obfuscated!
V efficient A with single-bit output , obfuscate
d efticient S, s.t. V programs P FHE . Enc(sk. @) if x = 0
A(Obf(P)) ~ S* 5 = a

Ca,ﬂ,y,sk (x) =

y if FHE . Dec(sk, x) = f3

1 otherwise

Qn: How to recovery,

given obtfuscation of C, 4., o 7

Assuming the security of FHE,

Ans: Run obf. program on 0 — encryption of a

Evaluate the obfuscated program on FHE ct —encryption of 8 cannot learn }/given oracle access to C y
Feed the final ct to the circuit to learn y a.p.y.s

NEED SOMETHING

An obfuscated program in
hand Is better than one In
the oracle!

Can run the

obfuscated

program on
itself

Can output the
obfuscated
program

Can use the

obfuscated

program for
FHE evaluation

— e — .. R

—_— = i

VBB obfuscation is possible
only for very small function classes

Obfuscations of functionally identical circuits are indistinguishable

If Cy(x)= C;(x)forallx,
Obf(C,) ~ Obf(C))

Efficiency
Function-Preserving
Let C" = Obf(C). For all inputs x, C(x) = C'(x) OBHEO) < poly(1C])
) | R & Obf must be efficient

Ans: If both efficiency requirements removed, then output the truth table. Qn: How to build iO it

It Obf(C) must be poly(|C|), then output the smallest circuit that is one/both efﬂciency req uirements

functionally identical to C.
. Y are removed?

Obfuscations of functionally identical programs are indistinguishable

If Cy(x)= C;(x)forallx,
Obf(C,) ~ Obf(C))

Theorem: If P = NP, then indistinguishability obfuscation exists.

If P = NP, then A one-way functions.

Existence of ind. obfuscation does not imply existence of one-way functions!

19 INDISTINGUISHABILITY OBFUSCATION OF ANY USE?

e e e —

[Garg-Gentry-Halevi-Raykova-Sahai-Waters 13]

[Sahai-Waters 14]

: : Public K
Witness Encryption ErL:cr;/Totig?f,\
Non interacti .
Zero |<°nno'vc|§<rjagce“§oofs Functional Encryption PPAD Hardness Short Signatures

Homomorphic Encryption 2-round MPC

10 + OWFs .
where crypto dreams come true !

Witness Encryption —> PKE, IBE, ABE

Short Digital Signatures

WITNESS ENCRYPTION

Clay Mathematical Institute’s Millennium Prize Problems

How to manage these awards?

A 3-step crypto solution

1. Putthe prize money in a bank account

Witness encryption » 2. Encryptthe bank account info using the

mathematical problem statement as ‘public key’

Witness decryption—— 3. Anyone with the correct solution/proof can use the

oroof as the ‘secret key’

WITNESS ENCRYPTION

e e e S e _ = —— T ———————— —_— —_ =

NP language L with relation R
xelL < dws.t. (x,w) €R

X ct

CORRECTNESS
If (x,w) € R,ct « W .Enc(m,x), then W . Dec(ct,w) = m

SECURITY
If x & L, then W .Enc(x,0) ¥ W.Enc(x,1)

WITNESS ENCRYPTION + PRG = PRE

= = e e ———— _— — — I —— ——

Pseudorandom generator G : {0,1}* = {0,1}*"

NP language L = {x e {0,1}*: qw € {0,1}"s.t. G(w) = x}

Setup () : Sample s < {0,1}"
pk = G(s) sk=s also implies IBE, ABE.

Withess encryption

Qn: How to define encryption and decryption?

Qn(*): Prove security of the above construction,

assuming G is secure PRG and security of witness encryption scheme.

Enc (pk,m) = W.Enc (pk, m) Dec (sk,m) = W . Dec (sk, m)

W .Enc(x,m) :

It R(x, w) = 1, output m.

Else output L

ct < 10(Prog_)

W . Dec(sk, ct) : Output ct(sk)

SECURITY
If x ¢ L, then W .Enc(x,0) ® W.Enc(x,1)

Prog

Output L

Observation: If x & L, then

Prog, ., and Prog’ are functionally identical.
W . Enc(x,0) = iO(Progx,O)
~ iO(Prog’)

W .Enc(x,]1) = iO(Prog)

10 + OWFs .
where crypto dreams come true !

Witness Encryption —> PKE, IBE, ABE

Short digital signatures

0 -+ OWF ==> DIGITAL SIGNATURES _

— e e ————— J—

Setup () : Sample PRF key k. sk = k

Ver-Prog,

f PRF(k, m) = o, output 1. If we had VBB obfuscation instead of 10,
Else output 0. security follows from PRF security!

vk « iO(Ver-Prog,)

How to use 10 security? Not clear.

Sign (k,m): o=PRF(km)

Verify (vk, m, o) : Output vk(m, o)

0 -+ OWF ==> DIGITAL SIGNATURES _

— e e ————— J—

Setup () : Sample PRF key k. sk = k

Ver-Prog,

it {{ PRF(k, m)) =1 o), output 1.
Else output 0.

vk « iO(Ver-Prog,)

Sign (k,m): o=PRF(km)

Verify (vk, m, o) : Output vk(m, o)

f : One way function

We need to use special PRFs
called ‘puncturable PRFs’

0 -+ OWF ==> DIGITAL SIGNATURES _

— e e ————— R —— — = — — ==

Qn: OWF — PRG — puncturable PRFs f : One way function

How to use length-doubling PRG We need to use special PRFs
to construct puncturable PRFs? called ‘puncturable PRFs’

(F, Puncture, Eval): puncturable PRF

Ans: Use GGM tree-based PRF construction k k . k
Punctured PRF key consists of n evaluations in the tree PunCture(€Y R, lTlpUt .X) — {X}

Eval(k{x}, input x’) —y
If x #x’, Eval(k{x}, input x’) = F(k, x”)

Security: (k{x}, F(k, x)) ~ (k{x}, random)

0 -+ OWF ==> DIGITAL SIGNATURES _

— = — e = = = — e R — e — _— — ——— ——————— B

f : One way function, (PRF, Puncture, Eval): puncturable PRF

Setup () : Sample PRF key k.sk =k

Ver-Prog, Security proof uses a new proof technique
- ‘punctured programming’ which is crucial
- f {{ PRF(k, m)) = (&), output 1. for most 10 based security proofs.

Else output O.

Theorem: Assuming f is a secure OWE
(PRFE, Puncture, Eval) is a puncturable PRE,
10 1s a secure ind. obfuscation,

vk « iO(Ver-Prog,)

Sign (k,m): o=PRF(km)

the signature scheme is selectively secure.

Verify (vk,m, o) : Output vk(m, o)

CONCLUSIONS

Various security definitions of code obfuscation
Strong VBB obfuscation : impossible for unlearnable functions - adversary can simply
output the obfuscated program
VBB obfuscation for Turing machines: impossible for many functions - adversary can
run the obfuscated program on itselt
VBB obfuscation for circuits: impossible for many functions, assuming FHE exist -
adversary can run FHE evaluation using obfuscated circuit

Indistinguishability obfuscation : only guarantees that obfuscations of functionally
identical programs are indistinguishable

IO does not imply OWFs. But iO + OWFs — lot of cryptographic primitives
Witness encryption: an advanced crypto primitive with simple iO-based construction
For many advanced primitives, the only known constructions are using iO

CONCLUSIONS

Very active area of research over the last ten years
First candidate construction in 2013 by Garg-Gentry-Halevi-Raykova-Sahai-Waters

FE and iO are equivalent. One direction (iO = FE) was shown by Garg-Gentry-
Halevi-Raykova-Sahai-Waters, while the other direction was shown by Ananth-Jain
and Bitansky-Vaikuntanathan in 2015.

Attack — Fix - New attack — New Fix ...
In 2020, Jain-Lin-Sahai gave construction using bilinear maps + LWE + low-depth

PRGs — well-studied cryptographic assumptions

Several major questions are still open
Current constructions are terribly impractical. Improving efficiency?
Post-quantum construction? The current constructions use bilinear maps, and

therefore not post-quantum secure

