ADVANCED CRYPTOGRAPHIC PRIMITIVES

PART 2: CONSTRUCTIONS OF IBE / ABE

ACM INDIA SUMMER SCHOOL (12 - 06 - 2024)

Venkata Koppula (IIT Delhi) kvenkata@iitd.ac.in

PLAN FOR THE TALK

Lattice based constructions of IBE and ABE

- 1. Lattice Toolkit
 - 1a. Learning with Errors Problem
 - 1b. Lattice trapdoors
- 2. IBE constructions
 - 2a. IBE scheme secure in the random oracle model
 - 2b. IBE scheme secure in the standard model
- 3. ABE constructions (inner product, general circuits)

TOOLKIT FOR LATTICE BASED CRYPTOGRAPHY

NOTATIONS

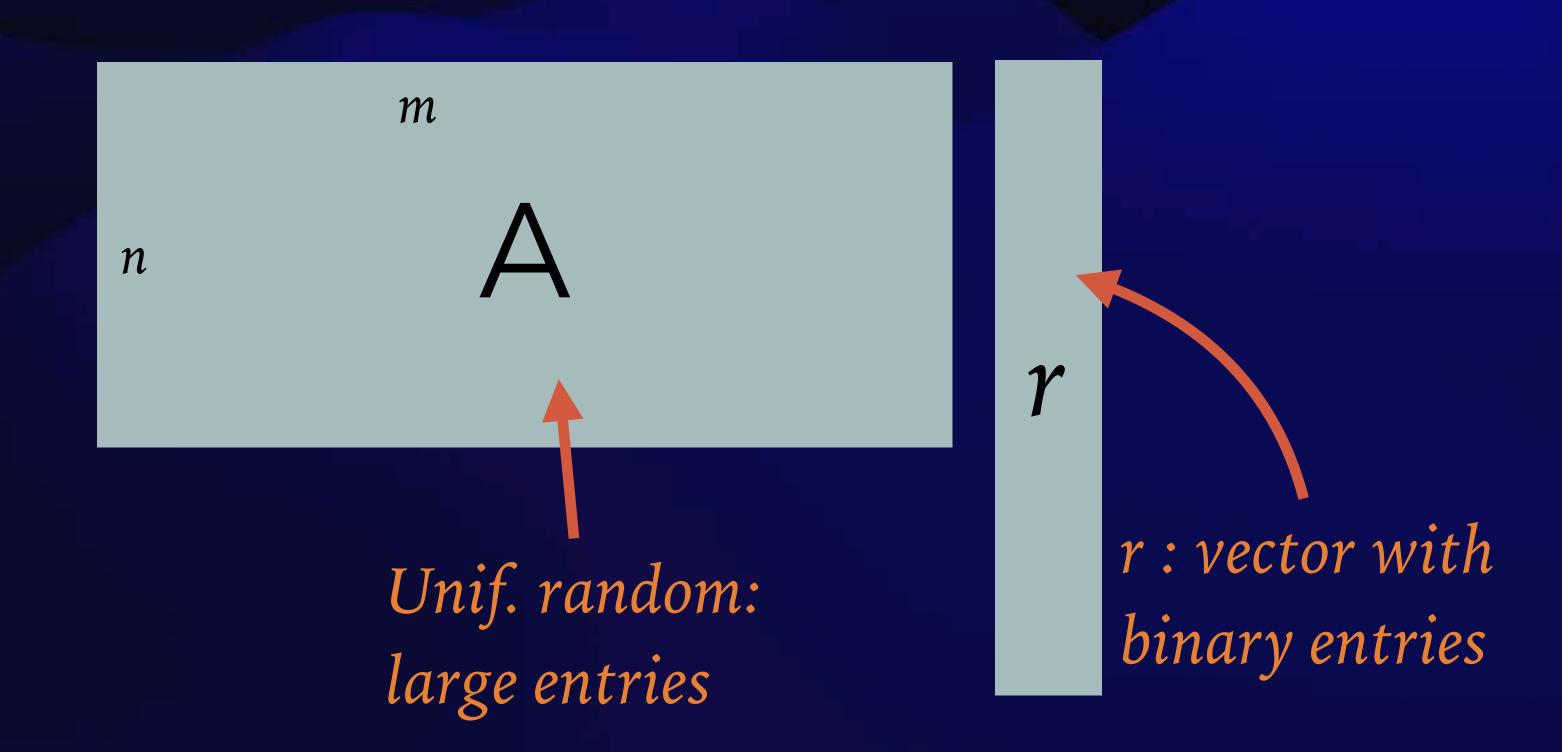
All computation is mod q, where q is a large modulus

n: security parameter, $m \approx n^2$, $q \approx 2^{\sqrt{n}}$

small entries: poly(n) large entries: superpoly(n)

Example 1:

A · r has large entries



NOTATIONS

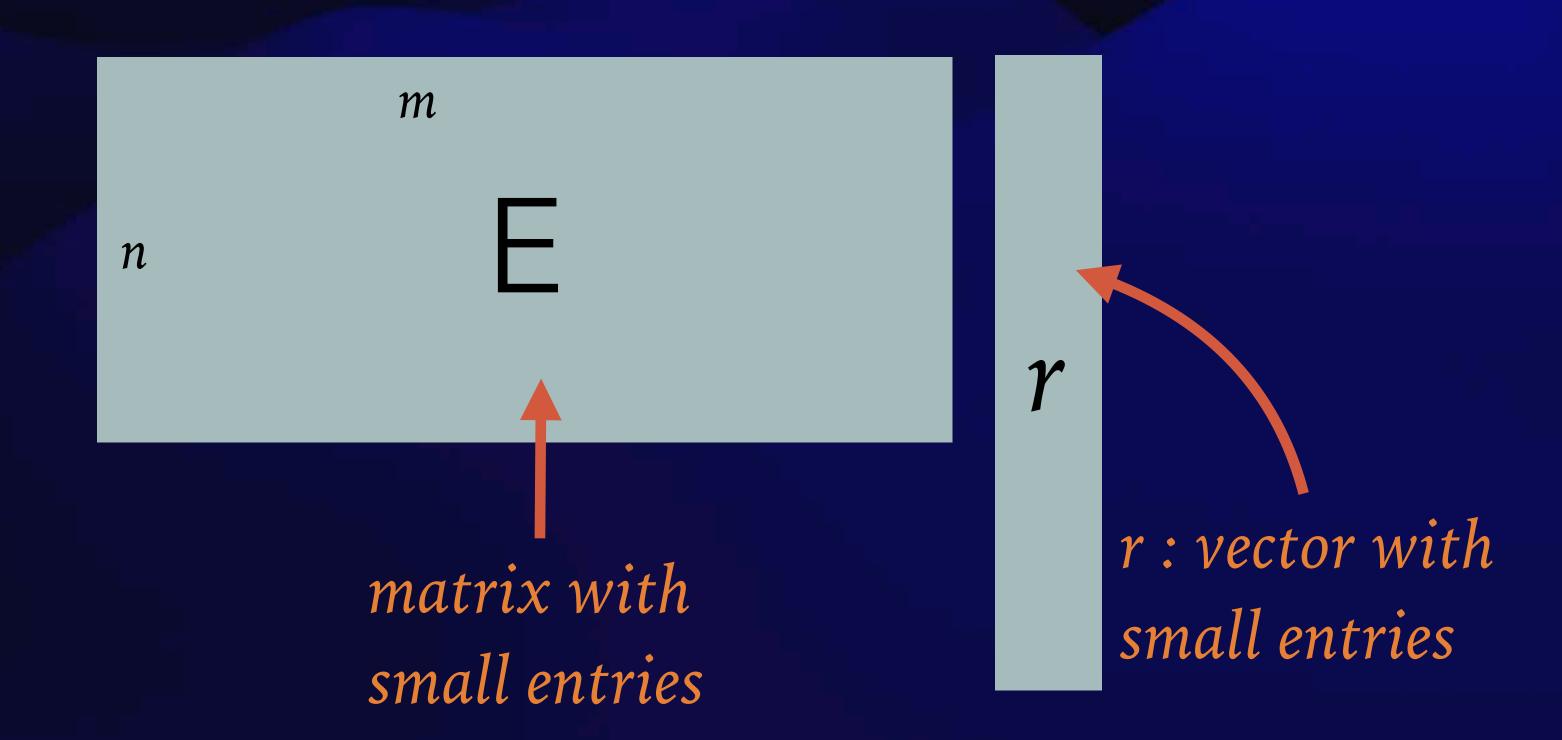
All computation is mod q, where q is a large modulus

n: security parameter, $m \approx n^2$, $q \approx 2^{\sqrt{n}}$

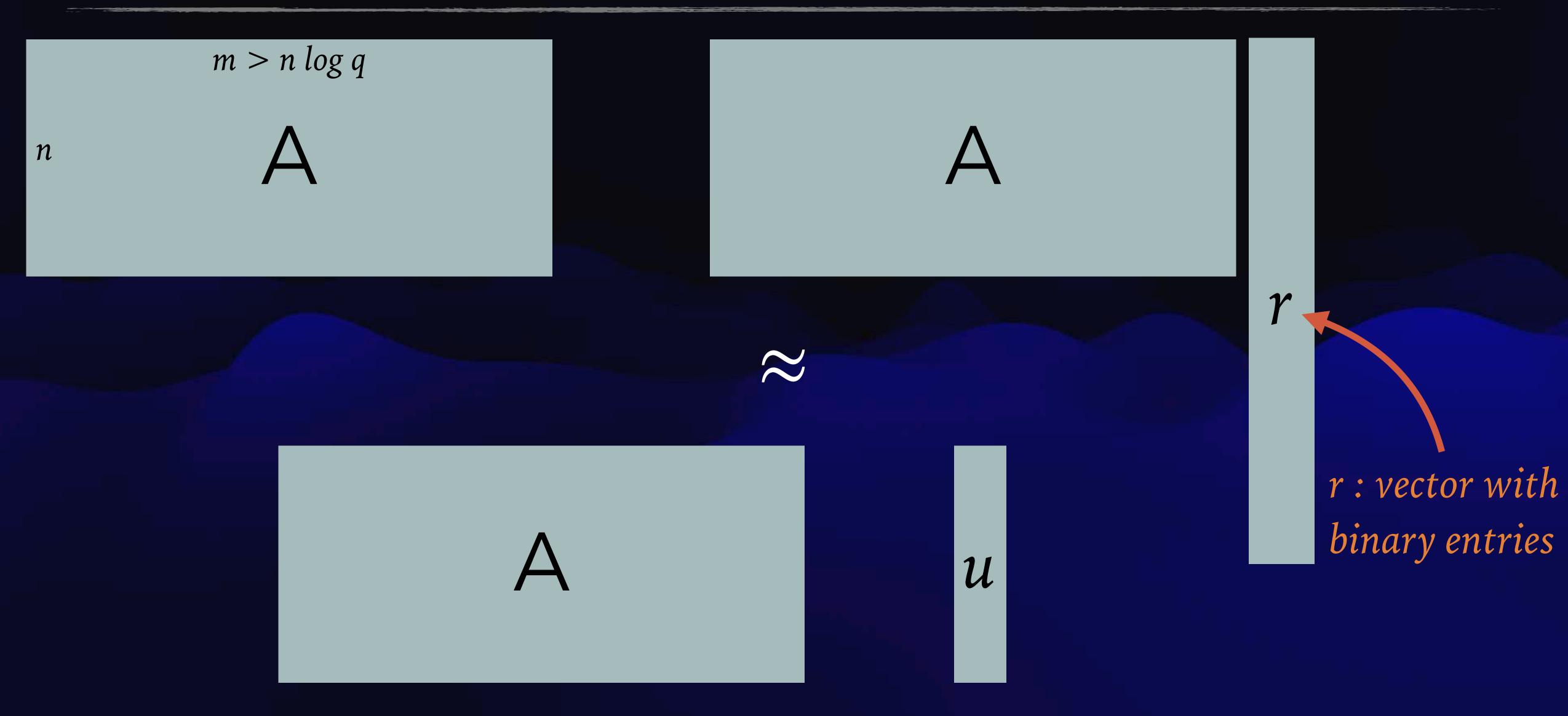
small entries: poly(n) large entries: superpoly(n)

Example 2:

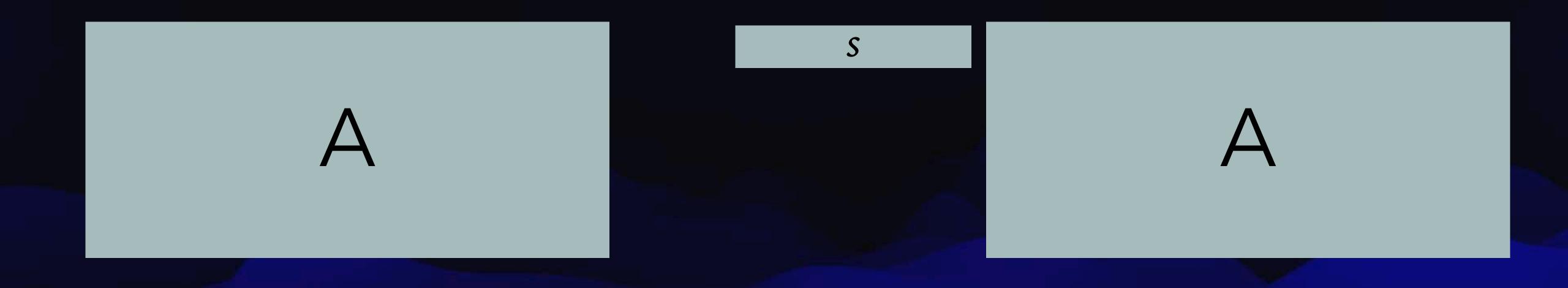
E · r has small entries



A USEFUL LEMMA

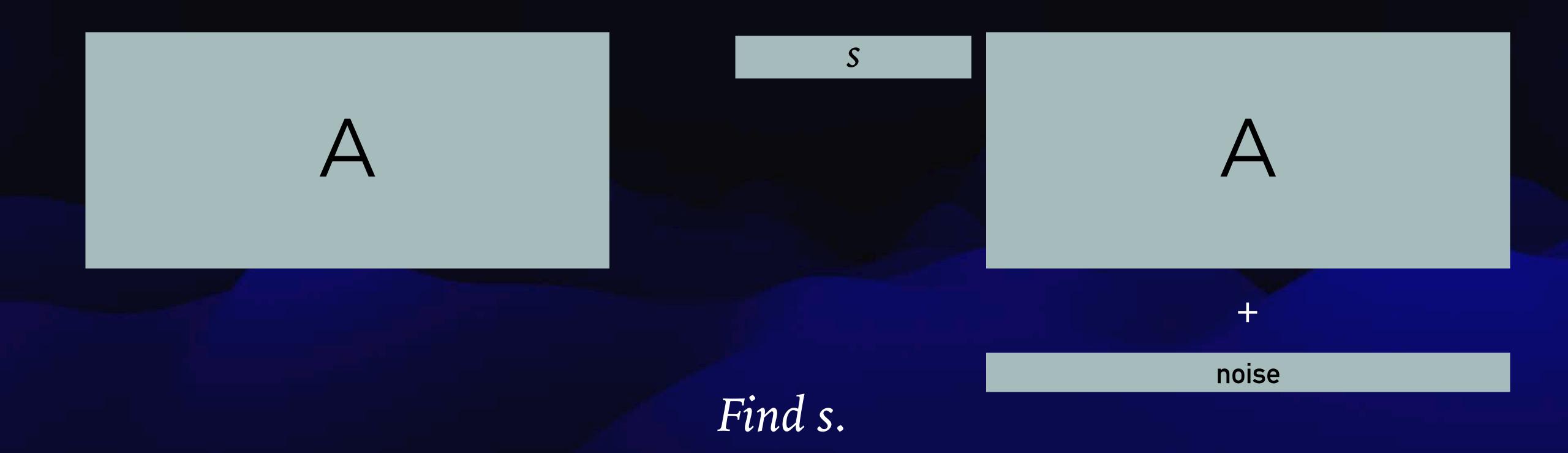


THE LEARNING WITH ERRORS PROBLEM



Find s.

THE LEARNING WITH ERRORS PROBLEM

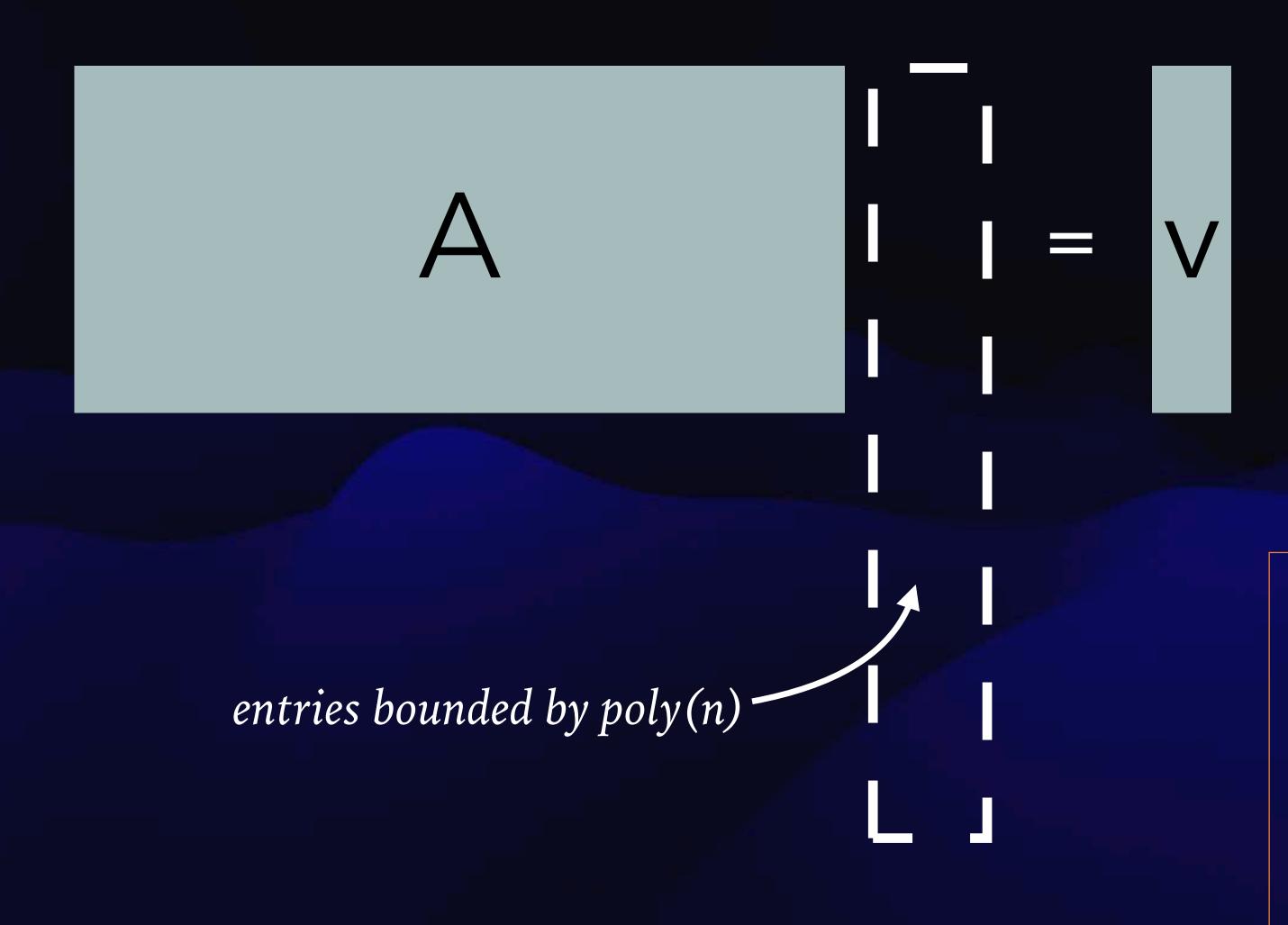


THE LEARNING WITH ERRORS PROBLEM

$$\left\{ \begin{pmatrix} \mathbf{A} & , & \mathbf{s}^{\mathrm{T}} \cdot \mathbf{A} + \mathbf{e} \end{pmatrix} : \mathbf{A} \leftarrow \mathbb{Z}^{n \times m}, \mathbf{s} \leftarrow \mathbb{Z}_q^n, \mathbf{e} \leftarrow [-B, B]^m \right\} \approx_{C}$$

$$\left\{ \begin{pmatrix} \mathbf{A} & , & \mathbf{u} \end{pmatrix} : \mathbf{A} \leftarrow \mathbb{Z}_q^{n \times m}, \mathbf{u} \leftarrow \mathbb{Z}_q^m \right\}$$

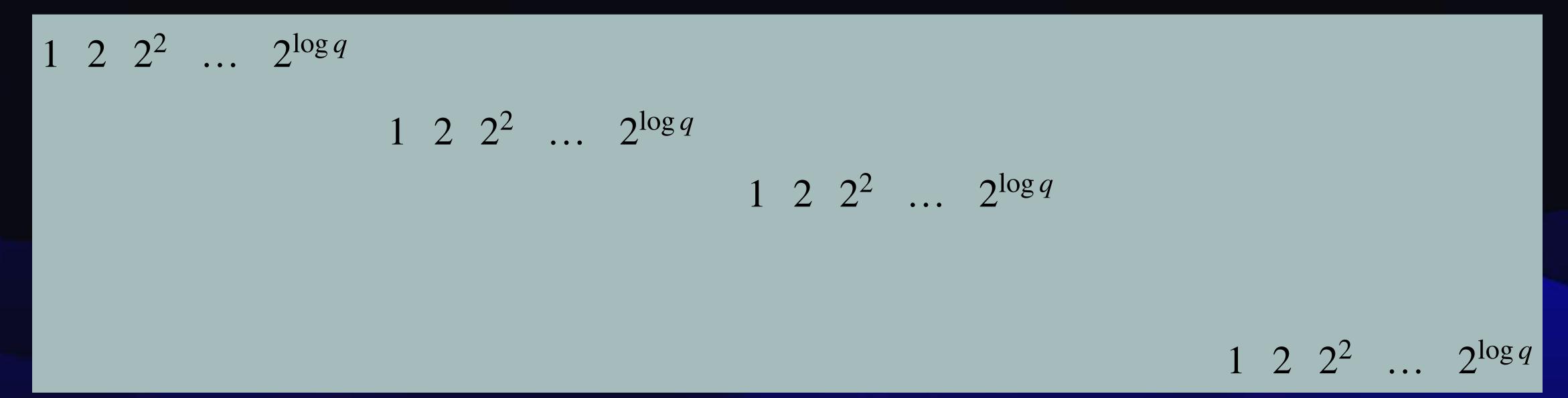
$$B \approx n$$
, $m \approx n^2$, $q \approx 2^{\sqrt{n}}$



Goal: Given random \mathbf{A} , \mathbf{v} , find \mathbf{w} with small entries s.t. $\mathbf{A} \cdot \mathbf{w} = \mathbf{v}.$

On: Assuming LWE is hard, show that it is hard to find such a **w** with small entries for random **A**.

... but finding short pre-images can be easy if A is a 'structured' matrix



Gadget matrix G

On: Given any v, find w with small entries s.t.

$$\mathbf{G} \cdot \mathbf{w} = \mathbf{v}$$
.

Matrix A

R: square matrix with binary entries

On: Given any v, find w with small entries s.t.

$$\mathbf{A} \cdot \mathbf{w} = \mathbf{v}$$
.

Theorem: It is possible to sample a matrix A with a trapdoor T_A s.t.

- Using T_A , we can find pre-image of any \mathbf{v} .
- A looks like a uniformly random matrix.
- If **v** is uniformly random, then pre-image of **v** is a random vector with small entries.

 $\sim A^{-1}(\mathbf{v})$

Extending trapdoor $T_{\mathbf{A}}$ to the right

On: Given any $\bf A$ with trapdoor $T_{\bf A}$, and $\bf B, v$, find $\bf w$ with small entries s.t.

$$\begin{bmatrix} \mathbf{A} \mid \mathbf{B} \end{bmatrix} \cdot \mathbf{w} = \mathbf{v}$$

Extending trapdoor $T_{\mathbf{G}}$ to the left

On: Given any A, matrix R with binary entries, and vector \mathbf{v} , find \mathbf{w} with small entries s.t.

$$\begin{bmatrix} A \mid A \cdot R + G \end{bmatrix} \cdot w = v$$

On (*): Given any \mathbf{A} , \mathbf{R}_1 , \mathbf{R}_2 , \mathbf{R}_3 with binary entries, and \mathbf{v} , find \mathbf{w} with small entries s.t. $\begin{bmatrix} \mathbf{A} & \mathbf{A} \cdot \mathbf{R}_1 + \mathbf{G} & \mathbf{A} \cdot \mathbf{R}_2 + \mathbf{G} & \mathbf{A} \cdot \mathbf{R}_3 \end{bmatrix} \cdot \mathbf{w} = \mathbf{v}$

SUMMARY OF LATTICE TOOLKIT

$$(A, A \cdot r) \approx (A, u)$$

A: flat uniform matrix, r: short entries, u: uniform vector

$$(A, s \cdot A + e) \approx (A, u)$$

A: flat uniform matrix, s, u: uniform vector, e: short entries

Trapdoor T_A for matrix A can sample short preimage of any v

$$\mathbf{w}$$
 s.t. $\mathbf{A} \cdot \mathbf{w} = \mathbf{v}$

HOW TO USE LATTICE TOOLKIT FOR CRYPTOGRAPHY

Public Key Encryption

Identity Based Encryption

Attribute Based Encryption

PKE (DUAL-REGEV SCHEME)

Setup():
$$\mathbf{r} \leftarrow \{0,1\}^m$$
, $\mathbf{A} \leftarrow \mathbb{Z}_q^{n \times m}$
 $\mathsf{pk} = (\mathbf{A}, \mathbf{A} \cdot \mathbf{r})$, $\mathsf{sk} = \mathbf{r}$

Enc(pk = (A, v),
$$m \in \{0,1\}$$
):
Sample $\mathbf{s} \leftarrow \mathbb{Z}_q^n$
 $\mathsf{ct}_1 \approx \mathbf{s}^T \cdot \mathbf{A}$ $\mathsf{ct}_2 \approx \mathbf{s}^T \cdot \mathbf{v} + m \cdot q/2$

Output (ct_1, ct_2)

On: Prove security

Dec(
$$sk = r$$
, (ct_1, ct_2)):

Compute
$$z = \operatorname{ct}_2 - \operatorname{ct}_1 \cdot \mathbf{r}$$

If z close to q/2, output 1, else output 0

HOW TO USE LATTICE TOOLKIT FOR CRYPTOGRAPHY

Public Key Encryption

Identity Based Encryption

Attribute Based Encryption

Solution 1: Random oracle model

> Solution 2: Standard model

IBE IN THE RANDOM ORACLE MODEL [Gentry-Peikert-Vaikuntanathan 08]

Using mpk and ID, compute a public key pk_{ID} for ID Use Dual-Regev PKE encryption with pk_{ID}

Using msk and ID, compute secret key sk_{ID} for ID

IBE IN THE RANDOM ORACLE MODEL [Gentry-Peikert-Vaikuntanathan 08]

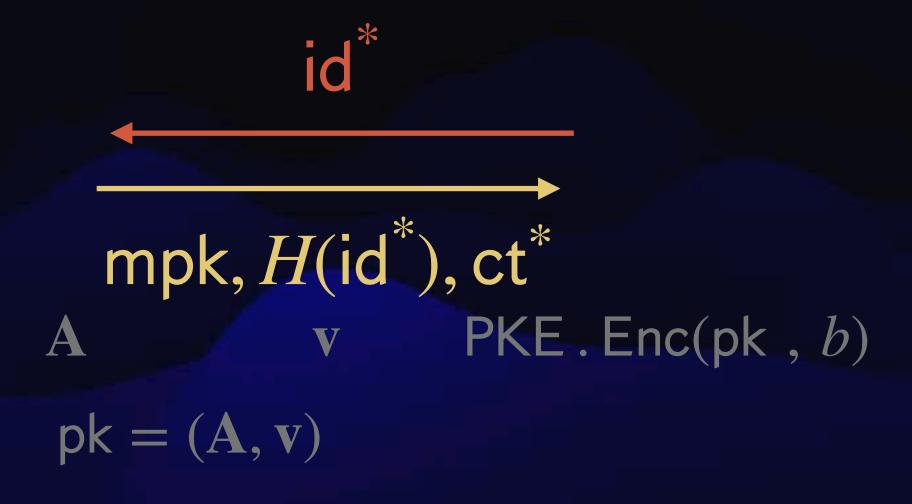
$$H:\mathscr{ID}\to\mathbb{Z}_q^n$$

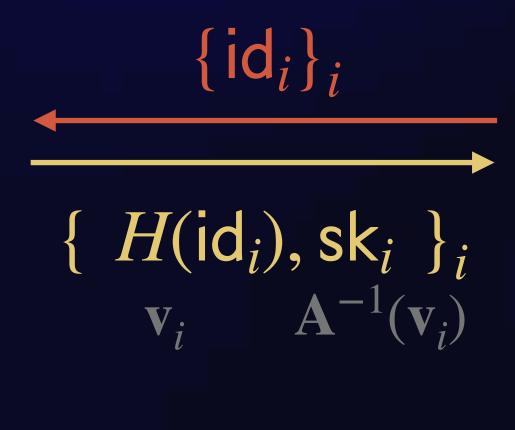
Setup():
$$mpk = A$$
 $msk = T_A$

Dec(skid, ct): Output PKE. Dec(skid, ct)

Chall.

Adv.





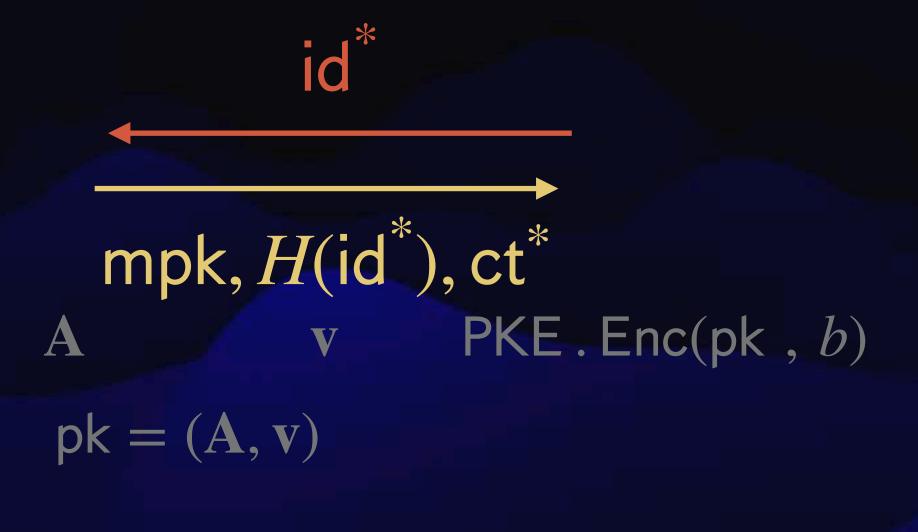
- Must use security of PKE scheme
 - Plant the PKE public key and challenge ct' in the IBE mpk and challenge ciphertext
- Must give out secret keys without knowing $T_{\mathbf{A}}$

Chall.

Adv.

Chall.

Adv.



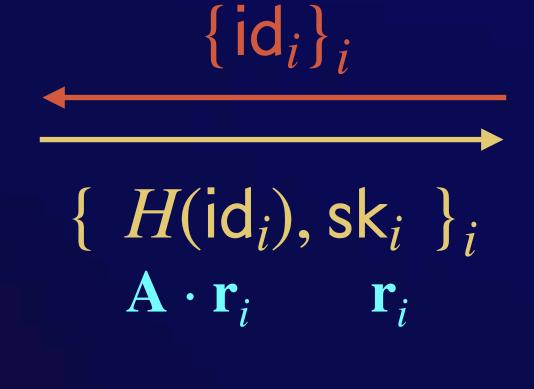


not using $T_{\mathbf{A}}$

$$\{ id_i \}_i$$

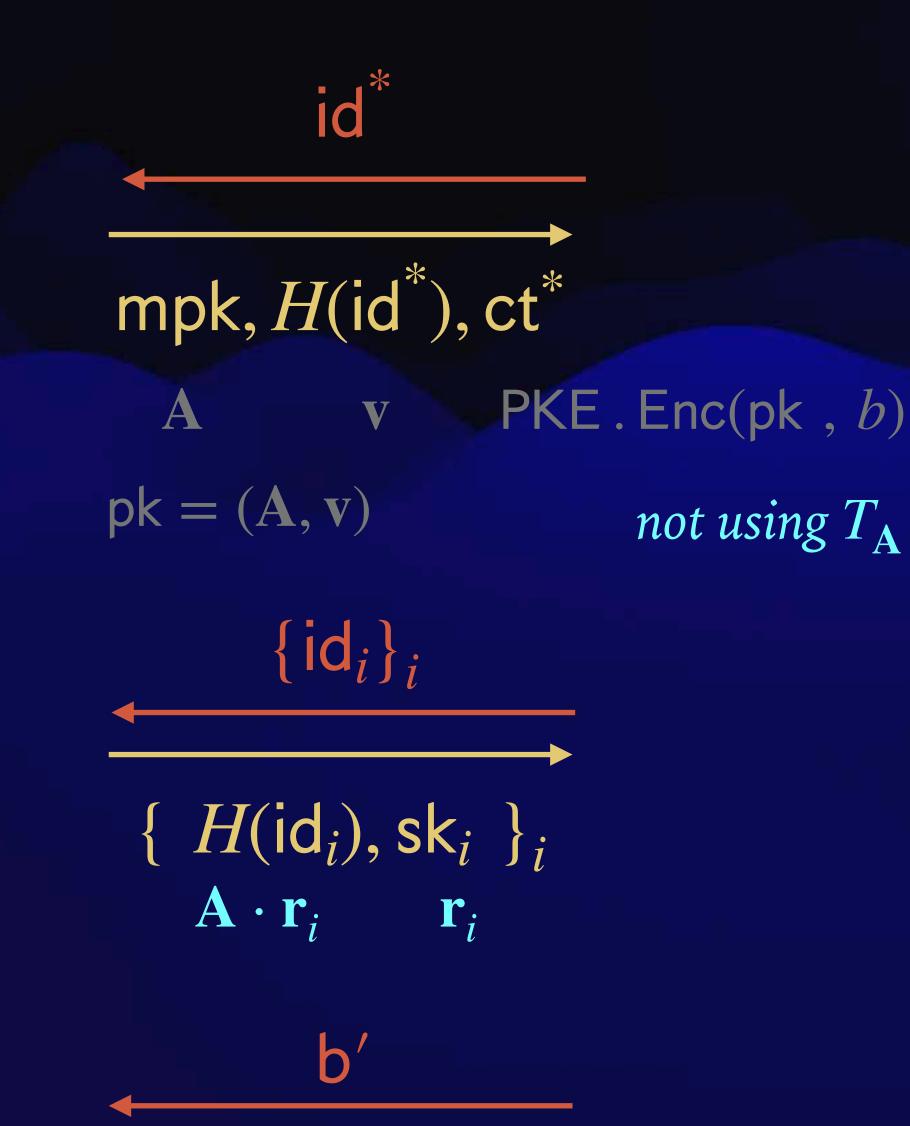
$$\{ H(id_i), sk_i \}_i$$

$$\mathbf{v}_i \quad \mathbf{A}^{-1}(\mathbf{v}_i)$$



Can use security of
Dual-Regev PKE
since only public key
used in this experiment

Chall. Adv.



IBE IN THE STANDARD MODEL [Cash-Hofheinz-Kiltz-Peikert 10]

Previous construction crucially used the programmability of random oracle.

Construction in the standard model?

Using mpk and ID, compute a public key pk_{ID} for ID Use Dual-Regev PKE encryption with pk_{ID}

Using msk and ID, compute secret key sk_{ID} for ID

IBE IN THE STANDARD MODEL [Cash-Hofheinz-Kiltz-Peikert 10]

$$\mathscr{ID} = \{0,1\}^{\ell}$$

Setup(): mpk =
$$\left(\mathbf{A}, \{\mathbf{A}_{\mathbf{i},\mathbf{b}}\}_{i \in [\ell], b \in \{0,1\}}\right)$$
 msk = $T_{\mathbf{A}}$

$$\begin{aligned} &\operatorname{Enc}\Big(\left(\mathbf{A},\left\{\mathbf{A}_{i,b}\right\}\right),\operatorname{id},m\in\left\{0,1\right\}\Big):\\ &\mathbf{A}_{\operatorname{id}}=\left[\mathbf{A}\mid\mathbf{A}_{1,\operatorname{id}_{1}}\mid\mathbf{A}_{2,\operatorname{id}_{2}}\mid\ldots\mid\mathbf{A}_{\ell,\operatorname{id}_{\ell}}\right]\\ &\operatorname{pk}_{\operatorname{id}}=\left(\mathbf{A}_{\operatorname{id}},\mathbf{v}\right)\quad\operatorname{ct}\leftarrow\operatorname{PKE}.\operatorname{Enc}(\operatorname{pk}_{\operatorname{id}},m) \end{aligned}$$

KeyGen(
$$T_A$$
, id):

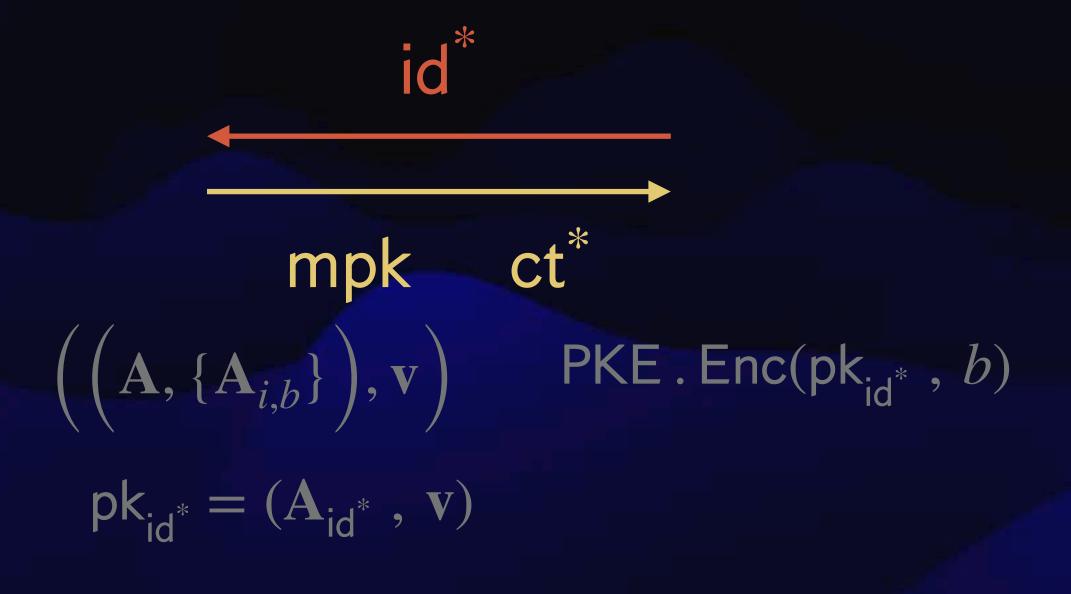
Use T_A to sample $\mathbf{r} \leftarrow \mathbf{A}_{id}^{-1}(\mathbf{v})$
 $\mathsf{sk}_{id} = \mathbf{r}$

Extending T_A

to the right

Chall.

Adv.



$$\{\operatorname{id}_{i}\}_{i}$$

$$\{\operatorname{sk}_{i} = \mathbf{A}_{\operatorname{id}_{i}}^{-1} (\mathbf{v})\}_{i}$$

b′

To use security of Dual-Regev PKE,

- IBE challenge ct should be the PKE challenge ct
- not use $T_{\mathbf{A}}$ for secret key queries

Idea: set mpk s.t. we don't need $T_{\mathbf{A}}$ for sk queries

$$\forall i, b \neq \mathrm{id}_i^*, \ \mathbf{A}_{i,b} = \mathbf{A} \cdot \mathbf{R}_i + \mathbf{G}$$

If $id \neq id^*$, can use T_G to compute sk_{id}

PKE Chall.

Reduction

IBE Adv.

$$\mathsf{pk} = \left(\begin{array}{c|cccc} [\mathbf{A} & \mathbf{B}_1 & \dots & \mathbf{B}_{\ell}] & \mathbf{v} \end{array} \right)$$

$$\mathbf{A}_{i,b} = \begin{cases} \mathbf{B}_i & if \ b = \mathrm{id}_i^* \\ \mathbf{A} \cdot \mathbf{R}_i + \mathbf{G} & otherwise \end{cases}$$

mpk ct*

 $\{\mathsf{id}_i\}_i$

 $\forall i$, compute $\mathbf{A}_{\mathsf{id}_i}^{-1}(\mathbf{v})$ using $T_{\mathbf{G}}$

$$\left\{ \mathsf{sk}_{i} = \mathbf{A}_{\mathsf{id}_{i}}^{-1} \left(\mathbf{v} \right) \right\}_{i}$$

b'

b′

HOW TO USE LATTICE TOOLKIT FOR CRYPTOGRAPHY

Public Key Encryption

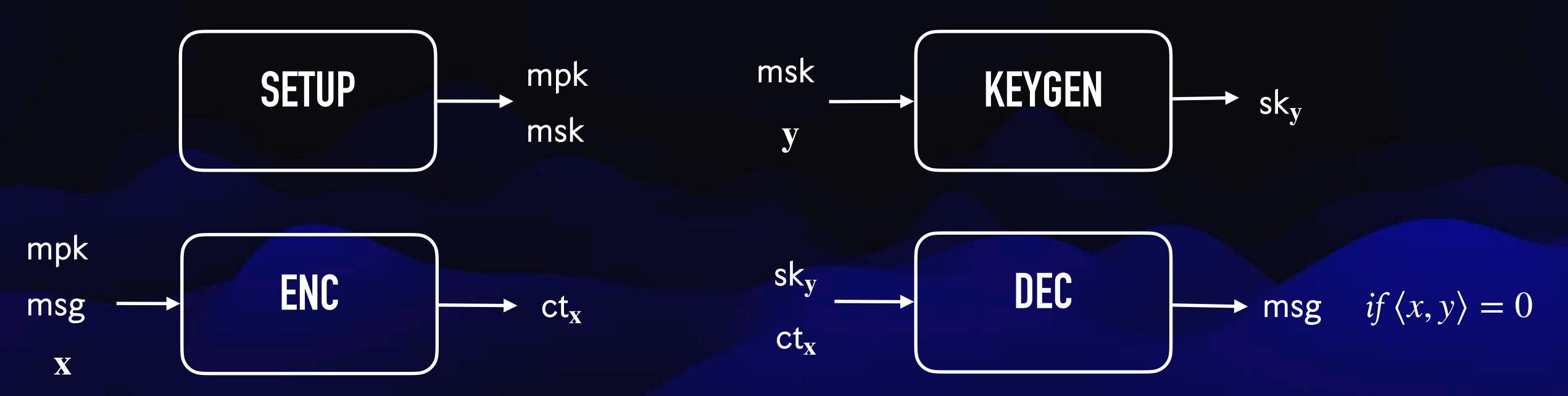
Identity Based Encryption

Attribute Based Encryption

Solution for Inner product policy

ABE FOR INNER-PRODUCTS [Agrawal-Freeman-Vaikuntanathan 11]

Attribute space = Policy space = $[-T, T]^{\ell}$ for some constant T

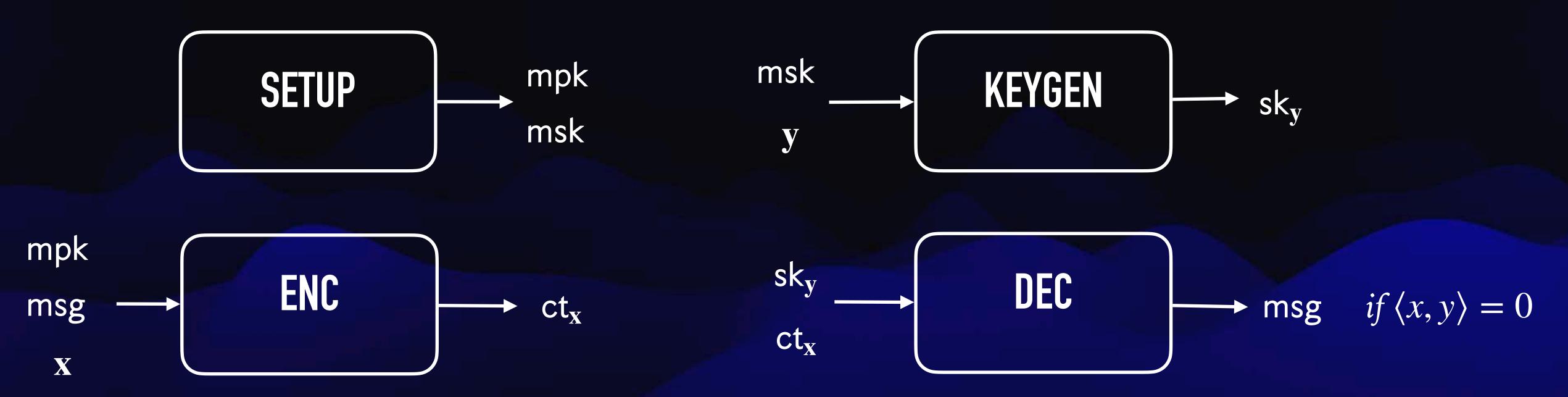


Why inner products?

Inner products capture expressive policies such as polynomial eval, CNFs, DNFs, etc.

ABE FOR INNER-PRODUCTS [Agrawal-Freeman-Vaikuntanathan 11]

Attribute space = Policy space = $[-T, T]^{\ell}$ for some constant T



Why inner products?

Inner products capture expressive policies such as polynomial eval, CNFs, DNFs, etc.

Previous idea of directly 'plugging in' Dual-Regev PKE does not work here :(

ABE FOR INNER-PRODUCTS [Agrawal-Freeman-Vaikuntanathan 11]

Setup(): mpk =
$$\left(\mathbf{A}, \{\mathbf{A_i}\}_{i \in [\ell]}\right)$$
 msk = $T_{\mathbf{A}}$

Enc
$$(A, \{A_i\}), x, m \in \{0,1\}$$
:

$$\mathbf{A}_{\mathbf{x}} = \left[\mathbf{A} \mid \mathbf{A}_1 + \mathbf{x}_1 \cdot \mathbf{G} \mid \dots \mid \mathbf{A}_{\ell} + \mathbf{x}_{\ell} \cdot \mathbf{G} \right]$$

$$pk_{x} = (A_{x}, v)$$
 ct \leftarrow PKE. Enc(pk_{x}, m)

On: How to decrypt?

Ans:
$$\mathbf{A_x} \rightarrow \begin{bmatrix} \mathbf{A} \mid \Sigma \ y_i \mathbf{A}_i \end{bmatrix} = \mathbf{B_y}$$
, $\mathsf{ct} = (\mathsf{ct_x}, \mathsf{ct_v})$
 $\mathsf{ct_x} \rightarrow \mathsf{PKE}$. $\mathsf{Enc}(\ \mathbf{B_y}, m\) = \mathsf{ct_y}$
 $\mathsf{Compute}\ \mathsf{ct_v} - \mathsf{ct_y} \cdot \mathsf{sk}$

KeyGen(
$$T_A$$
, y): $B_y = \begin{bmatrix} A \mid \Sigma_i y_i \cdot A_i \end{bmatrix}$

Use
$$T_{\mathbf{A}}$$
 to sample $\mathbf{r} \leftarrow \mathbf{B}_{\mathbf{y}}^{-1}(\mathbf{v})$

$$sk_{id} = r$$

ABE FOR GENERAL CIRCUITS [Boneh-Gentry-Gorbunov-Halevi-Nikolaenko-Segev-Vaikuntanathan-Vinayagamurthy 14]

Setup(): mpk =
$$\left(\mathbf{A}, \left\{\mathbf{A_i}\right\}_{i \in [\ell]}\right)$$
 msk = $T_{\mathbf{A}}$

Structure very similar to inner-products construction

Enc
$$(A, \{A_i\}), x, m \in \{0,1\}$$
:

$$\mathbf{A}_{\mathbf{x}} = \left[\mathbf{A} \mid \mathbf{A}_1 + \mathbf{x}_1 \cdot \mathbf{G} \mid \dots \mid \mathbf{A}_{\ell} + \mathbf{x}_{\ell} \cdot \mathbf{G} \right]$$

$$pk_{x} = (A_{x}, v)$$
 ct \leftarrow PKE. Enc(pk_{x}, m)

$$ct = (ct_x, ct_v)$$

$$ct_x \rightarrow s^T \cdot B_f + f(x)G + noise$$

KeyGen(
$$T_A$$
, f): $\mathbf{B}_f = \begin{bmatrix} \mathbf{A} \mid \mathbf{A}_f \end{bmatrix}$

Use T_A to sample $\mathbf{r} \leftarrow \mathbf{B}_f^{-1}(\mathbf{v})$

sk_{id} = \mathbf{r}

CONCLUSIONS

- [Gentry-Peikert-Vaikuntanathan 08]: First lattice-based IBE scheme in the random oracle model.
- [Cash-Hofheinz-Kiltz-Peikert 10]: Lattice based IBE in the standard model. Later, a more efficient lattice-based construction was given by [Agrawal-Boneh-Boyen 11]
- [Agrawal-Freeman-Vaikuntanathan 11]: Lattice based ABE for inner-products
- [Gorbunov-Vaikuntanathan-Wee 13]: First lattice based construction for all circuits. An improved construction was given by [Boneh-Gentry-Gorbunov-Halevi-Nikolaenko-Segev-Vaikuntanathan-Vinayagamurthy 14].
- Several improvements over the last few years. ABE where policies can be described using finite automata, Turing machines, etc.

THANK YOU!