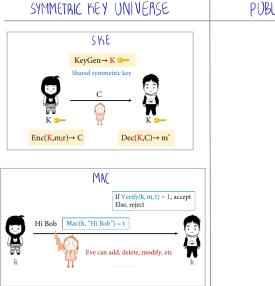
#### **Digital Signatures**

Chethan Kamath



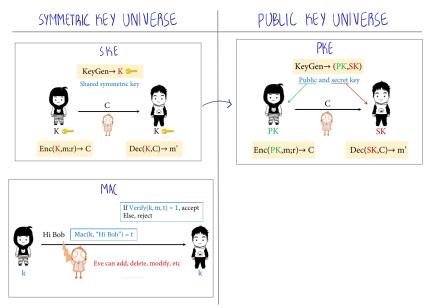
#### ACM Summer School 2024, 6/Jun/2024

#### Recall from Prior Sessions

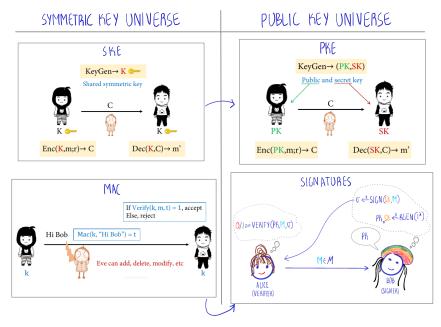


PUBLIC KEY UNIVERSE

#### Recall from Prior Sessions



#### Recall from Prior Sessions



Digital Signature: Syntax and Modelling Security

Digital Signature: Syntax and Modelling Security

**One-Time Signatures** 

Digital Signature: Syntax and Modelling Security

**One-Time Signatures** 

Many-Time (Stateful) Signatures

Digital Signature: Syntax and Modelling Security

**One-Time Signatures** 

Many-Time (Stateful) Signatures

Efficient Signatures via Hash-and-Sign

Digital Signature: Syntax and Modelling Security

**One-Time Signatures** 

Many-Time (Stateful) Signatures

Efficient Signatures via Hash-and-Sign

Wrapping Up

#### Digital Signature: Syntax and Modelling Security

**One-Time Signatures** 

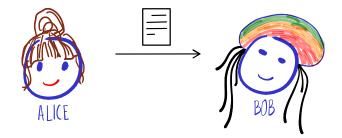
Many-Time (Stateful) Signatures

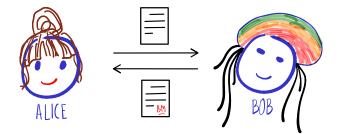
Efficient Signatures via Hash-and-Sign

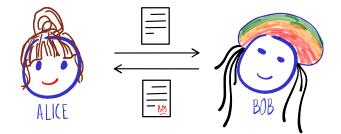
Wrapping Up



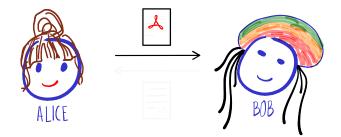


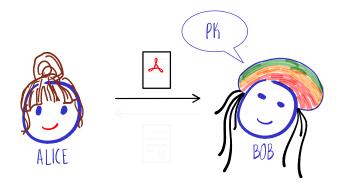


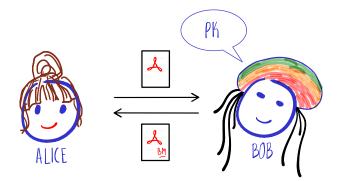




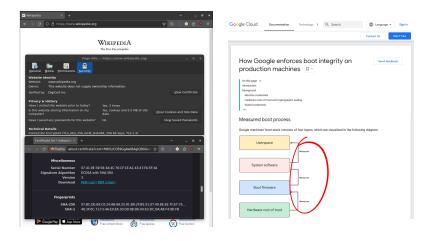


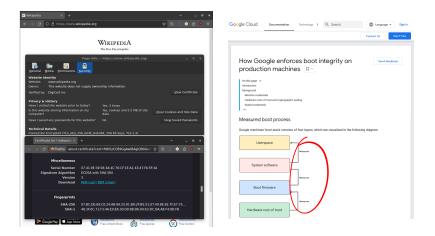








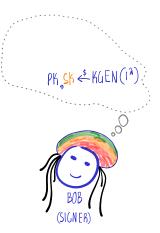




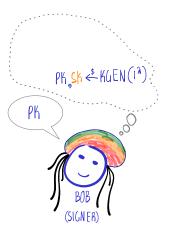
Application to blockchains protocols like Algorand and Chia.



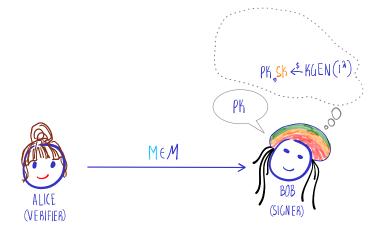


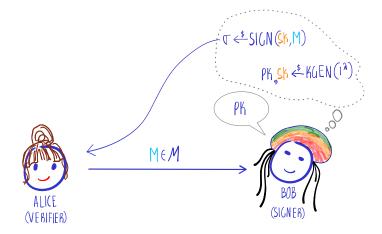


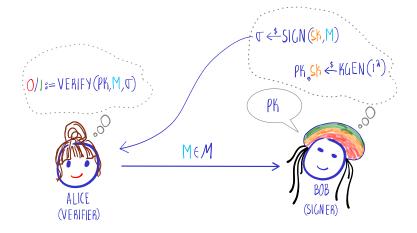












# Security: Universal Unforgeability under Key-Only Attack $\cancel{REAK}$

#### Definition 1

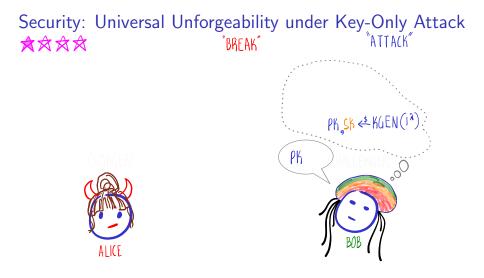
# Security: Universal Unforgeability under Key-Only Attack $A \otimes A \otimes A$



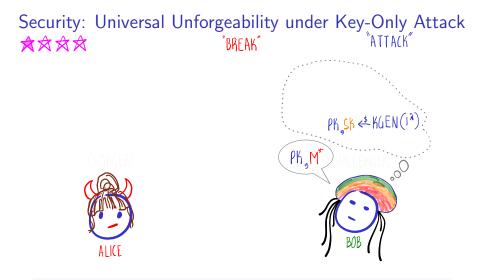
(CHALLENGER)



#### Definition 1



#### Definition 1



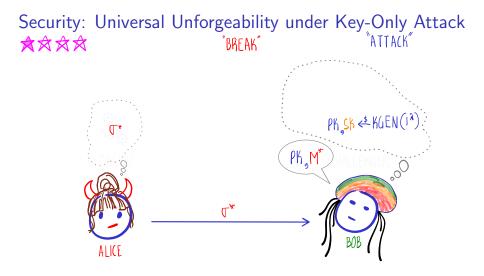
#### Definition 1

## Security: Universal Unforgeability under Key-Only Attack *`ATTACK* **BREAK** \*\*\* PK\_SK < KGEN(1<sup>№</sup>) PK "M\* ALICE

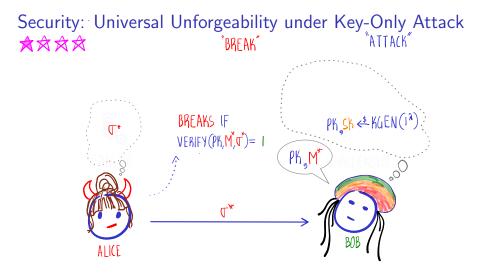
#### Definition 1

## Security: Universal Unforgeability under Key-Only Attack *`ATTACK* `BREAK*"* \*\*\* PK\_SK < KGEN(1<sup>№</sup>) PK "M\* ALICE

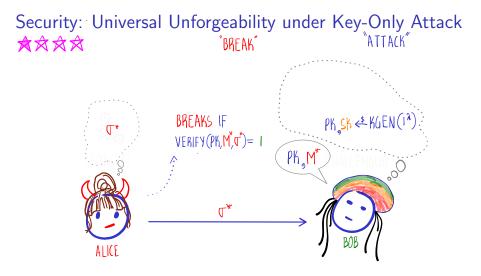
#### Definition 1



#### Definition 1



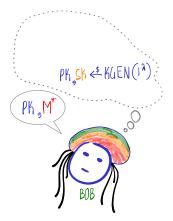
#### Definition 1



### Definition 1

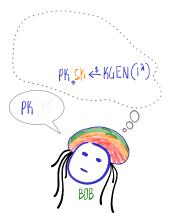
Definition 2



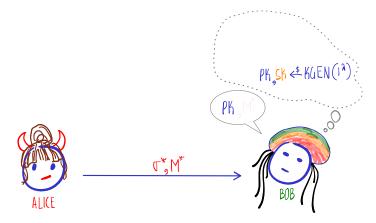


#### Definition 2

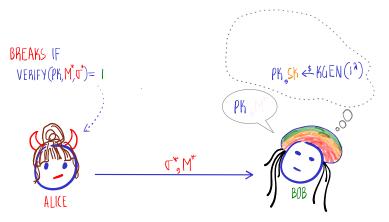




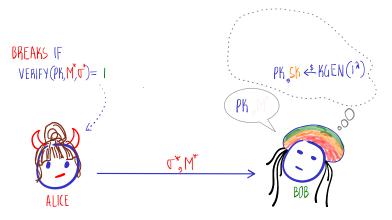
#### Definition 2



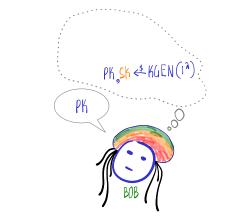
#### Definition 2



#### Definition 2

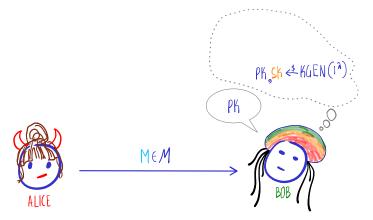


### Definition 2

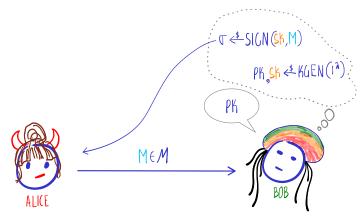




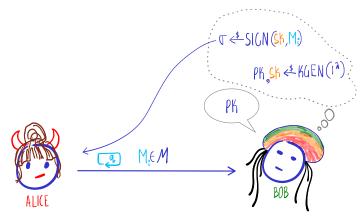
#### Definition 3



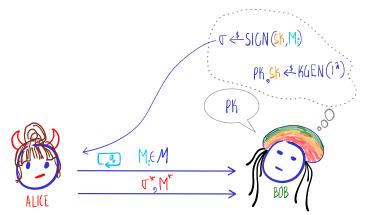
#### Definition 3



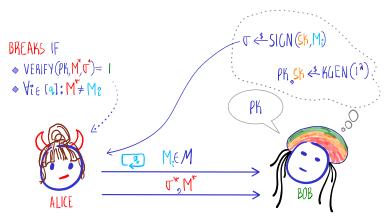
#### Definition 3



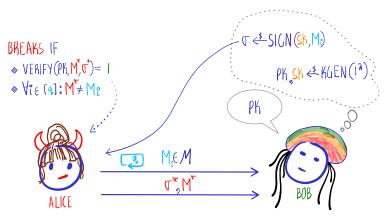
#### Definition 3



#### Definition 3



#### Definition 3



### Definition 3

### Plan for this Session

Digital Signature: Syntax and Modelling Security

**One-Time Signatures** 

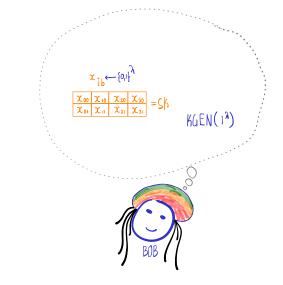
Many-Time (Stateful) Signatures

Efficient Signatures via Hash-and-Sign

Wrapping Up





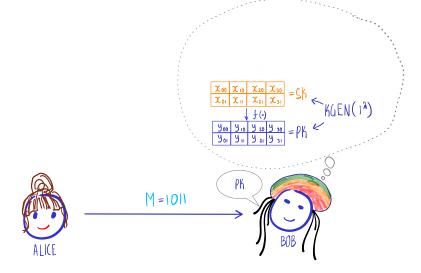


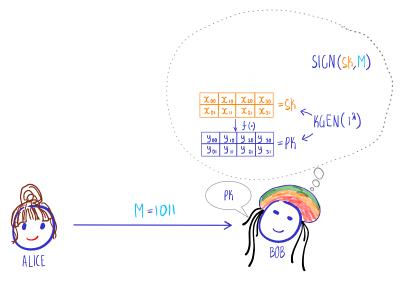


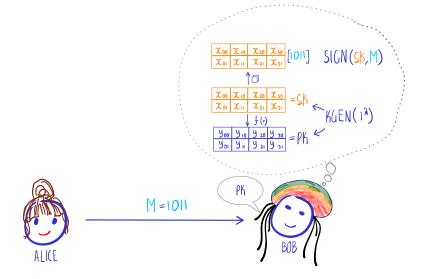


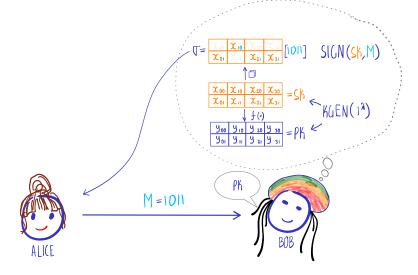


One-Time Signatures (q = 1): Lamport's Signature...

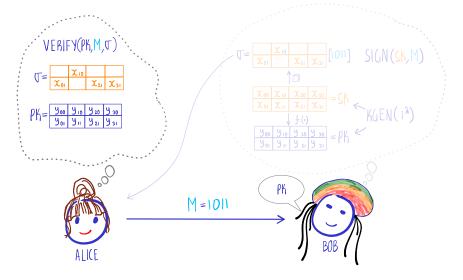




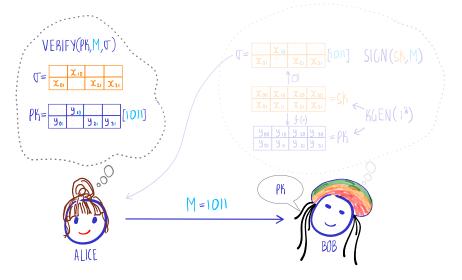




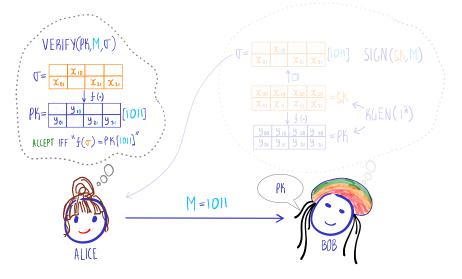
One-Time Signatures (q = 1): Lamport's Signature...



One-Time Signatures (q = 1): Lamport's Signature...

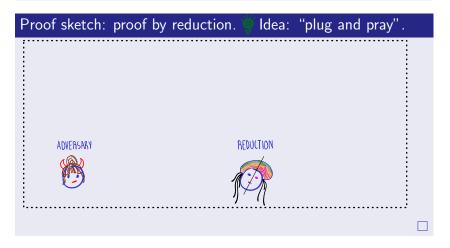


One-Time Signatures (q = 1): Lamport's Signature...

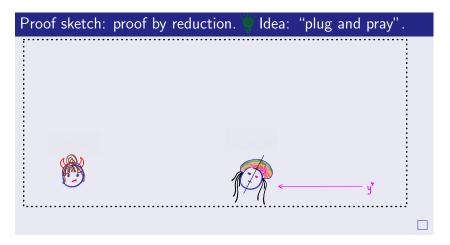


### Theorem 4

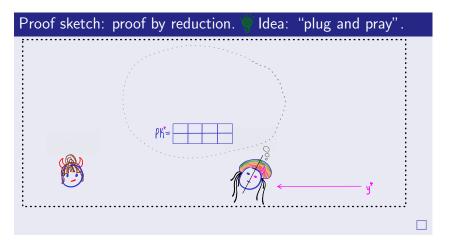
Theorem 4



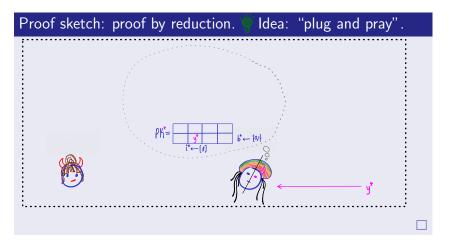
Theorem 4



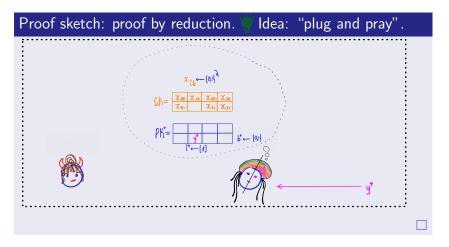
Theorem 4



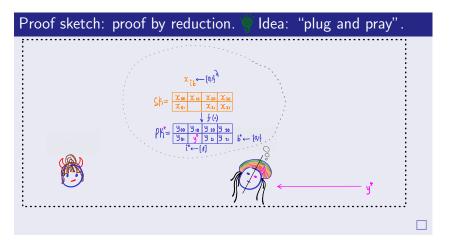
Theorem 4



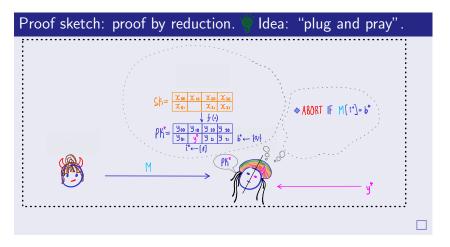
### Theorem 4



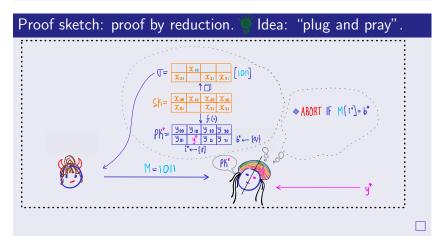
Theorem 4



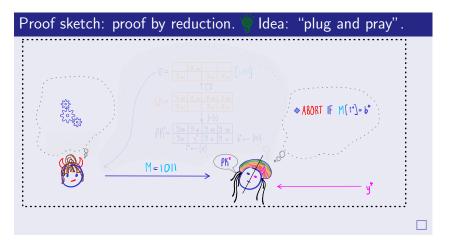
Theorem 4



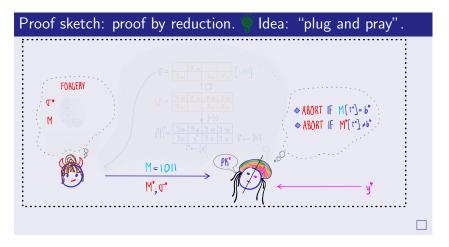
### Theorem 4



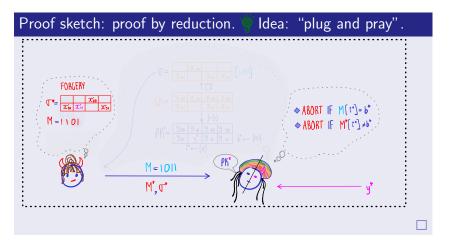
### Theorem 4



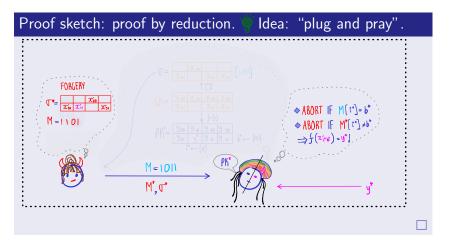
#### Theorem 4



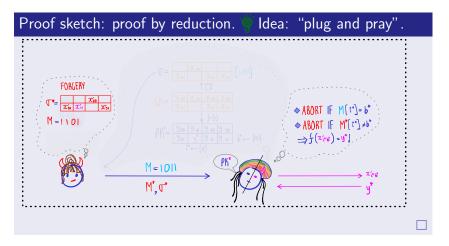
#### Theorem 4



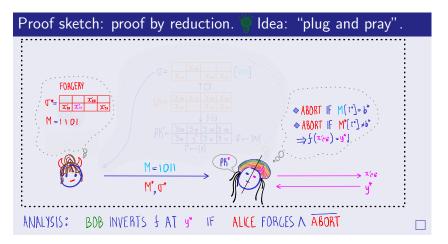
#### Theorem 4



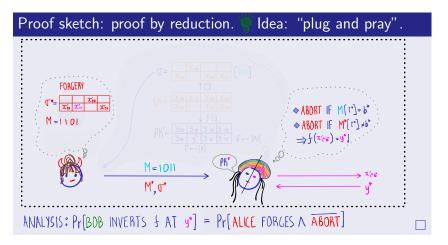
#### Theorem 4



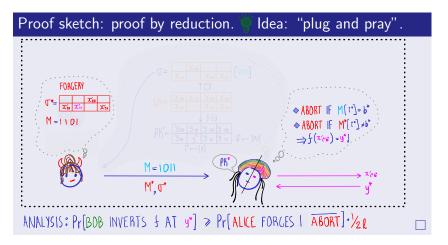
#### Theorem 4



#### Theorem 4



#### Theorem 4



#### Exercise 1

- Can a forger break EU-CMA given two signatures?
- ▶ What happens if we fix i<sup>\*</sup> = 0 in the proof?
- Are the signatures unique? If not, can it be made unique?

#### Exercise 1

- Can a forger break EU-CMA given two signatures?
- What happens if we fix  $i^* = 0$  in the proof?
- Are the signatures unique? If not, can it be made unique?

#### Theorem 5

#### Exercise 1

- Can a forger break EU-CMA given two signatures?
- What happens if we fix  $i^* = 0$  in the proof?
- Are the signatures unique? If not, can it be made unique?

#### Theorem 5

If f is a OWF then Lamport's scheme is a one-time signature for fixed-length messages.

#### Exercise 2 (Domain Extension)

Given a collision-resistant hash function  $H : \{0,1\}^{2\ell} \to \{0,1\}^{\ell}$ , construct a OTS for arbitrary-length messages.

#### Plan for this Session

Digital Signature: Syntax and Modelling Security

**One-Time Signatures** 

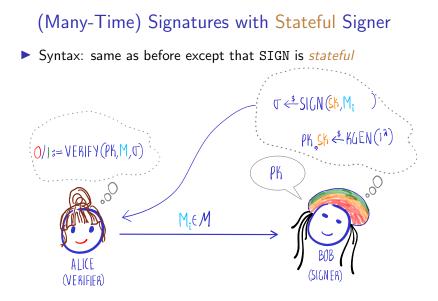
Many-Time (Stateful) Signatures

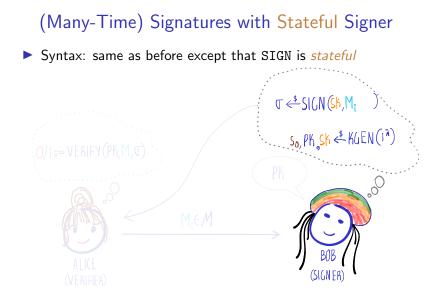
Efficient Signatures via Hash-and-Sign

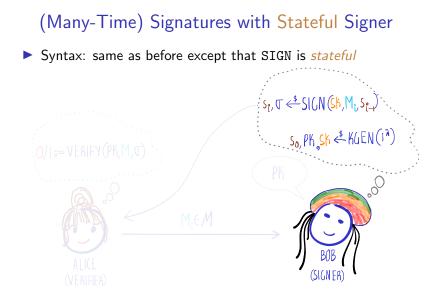
Wrapping Up

## (Many-Time) Signatures with Stateful Signer

Syntax: same as before except that SIGN is stateful



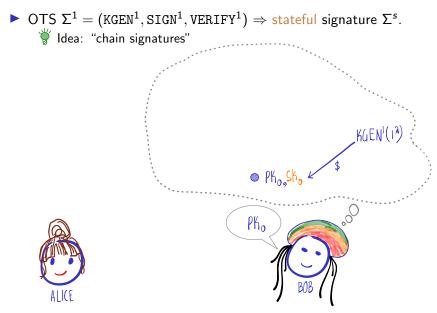




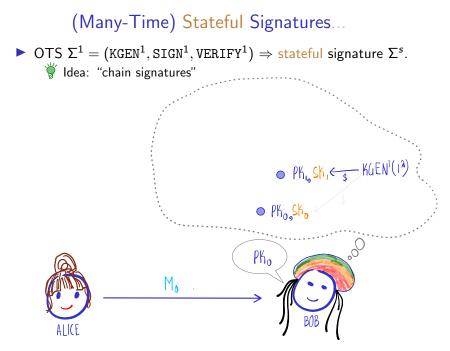


► OTS  $\Sigma^1 = (\text{KGEN}^1, \text{SIGN}^1, \text{VERIFY}^1) \Rightarrow \text{stateful signature } \Sigma^s$ .

#### ► OTS $\Sigma^1 = (\text{KGEN}^1, \text{SIGN}^1, \text{VERIFY}^1) \Rightarrow \text{stateful signature } \Sigma^s$ . $\bigvee$ Idea: "chain signatures"



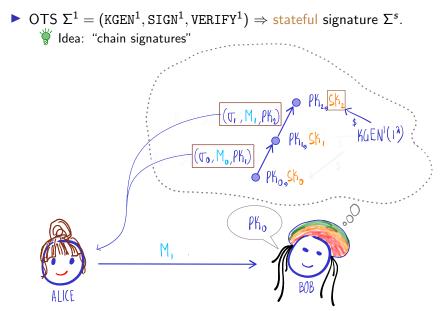
## (Many-Time) Stateful Signatures... • OTS $\Sigma^1 = (\text{KGEN}^1, \text{SIGN}^1, \text{VERIFY}^1) \Rightarrow \text{stateful signature } \Sigma^s$ . ϔ Idea: "chain signatures" KGEN1(1 • Pho Sk Pho Mo ALICE

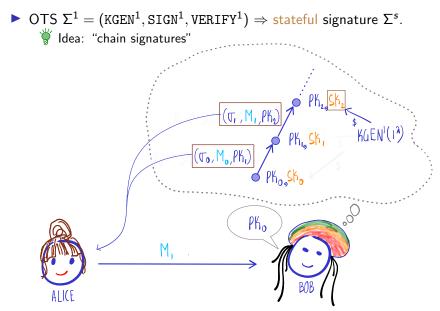


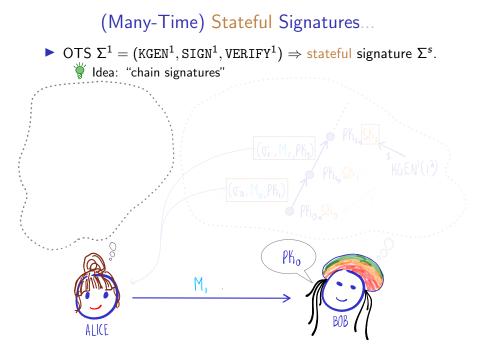
# (Many-Time) Stateful Signatures... • OTS $\Sigma^1 = (\text{KGEN}^1, \text{SIGN}^1, \text{VERIFY}^1) \Rightarrow \text{stateful signature } \Sigma^s$ . ϔ Idea: "chain signatures" $\sigma_{o} \in SICN(Sk_{o}, M_{o}||PK_{i})$ Pho M, ALICE

## (Many-Time) Stateful Signatures... • OTS $\Sigma^1 = (\text{KGEN}^1, \text{SIGN}^1, \text{VERIFY}^1) \Rightarrow \text{stateful signature } \Sigma^s$ . 🖞 Idea: "chain signatures" KGEN'(12) PK, SK, K \$ (To, Mo, PK, Pho Mo ALICE

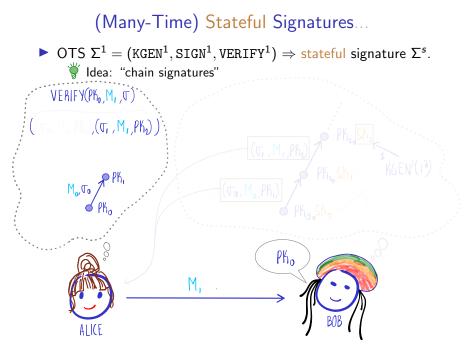
## (Many-Time) Stateful Signatures... • OTS $\Sigma^1 = (\text{KGEN}^1, \text{SIGN}^1, \text{VERIFY}^1) \Rightarrow \text{stateful signature } \Sigma^s$ . ϔ Idea: "chain signatures" Ph2,5 $\sigma_{i} \leftarrow SI(N^{I}(Sk_{i},M,||PK_{2}))$ KGEN'(12) (To, Mo, Ph,) Pho Μ, ALICE



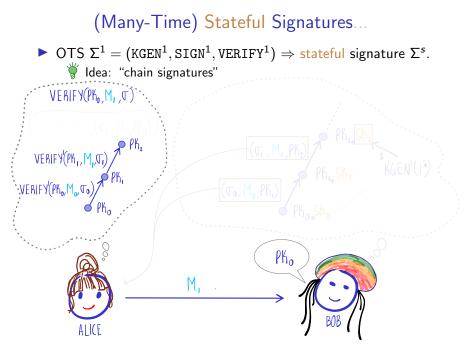


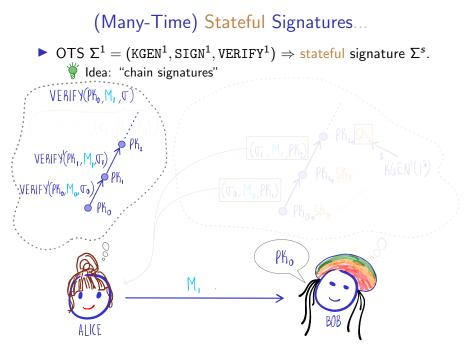


## (Many-Time) Stateful Signatures... • OTS $\Sigma^1 = (\text{KGEN}^1, \text{SIGN}^1, \text{VERIFY}^1) \Rightarrow \text{stateful signature } \Sigma^s$ . 🍟 Idea: "chain signatures" VERIFY(PK, M, , T) $((\sigma_0, M_0, PK_1), (\sigma_1, M_1, PK_2))$ • Ph Pho Μ, ALICE









#### Theorem 6

If  $\Sigma^1$  is an OTS supporting arbitrary-length messages then  $\Sigma^s$  is a stateful signature.

#### Theorem 6

If  $\Sigma^1$  is an OTS supporting arbitrary-length messages then  $\Sigma^s$  is a stateful signature.

#### Proof sketch: plug and pray, again.





REDUCTION



#### Theorem 6

If  $\Sigma^1$  is an OTS supporting arbitrary-length messages then  $\Sigma^s$  is a stateful signature.

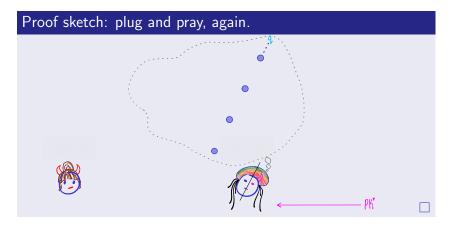
#### Proof sketch: plug and pray, again.



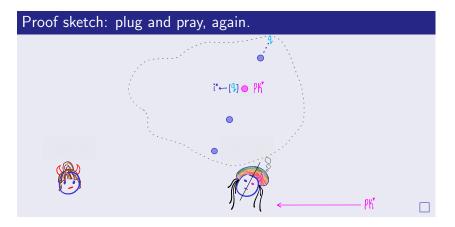


#### Theorem 6

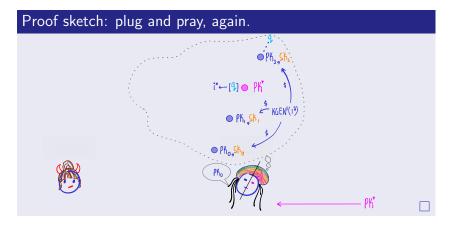
If  $\Sigma^1$  is an OTS supporting arbitrary-length messages then  $\Sigma^s$  is a stateful signature.



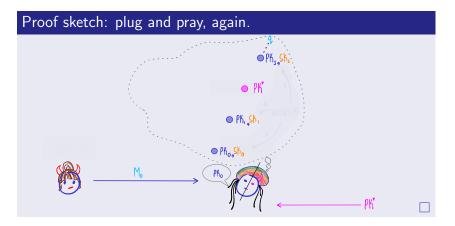
#### Theorem 6



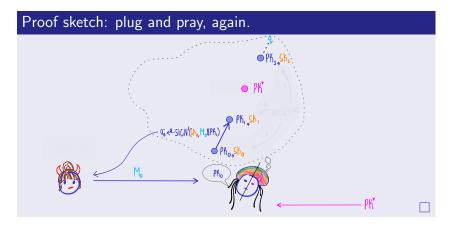
#### Theorem 6



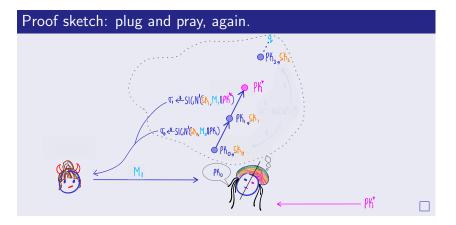
#### Theorem 6



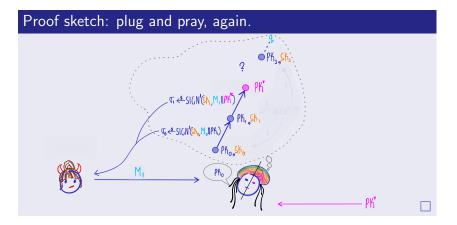
#### Theorem 6



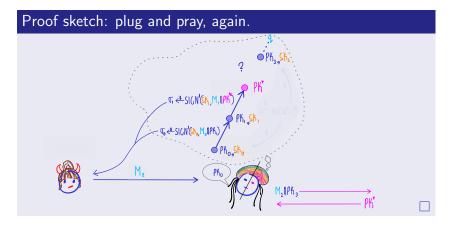
#### Theorem 6



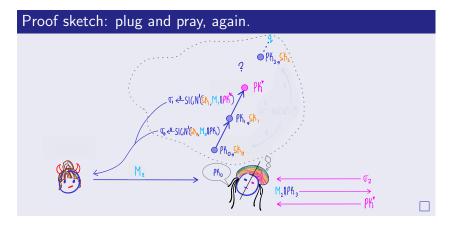
#### Theorem 6



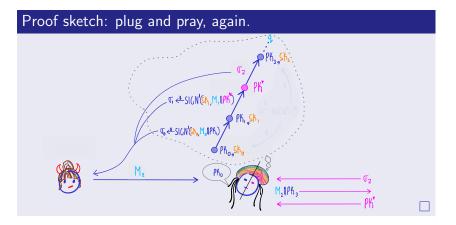
#### Theorem 6



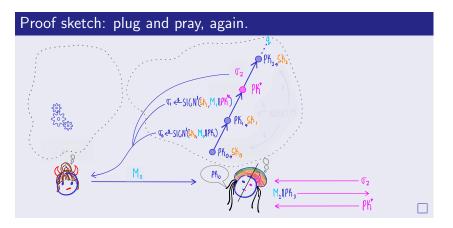
#### Theorem 6



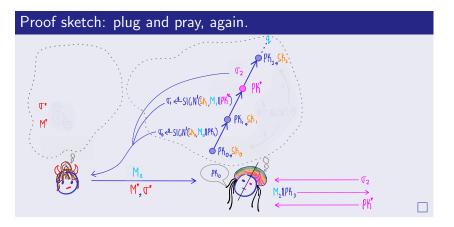
#### Theorem 6



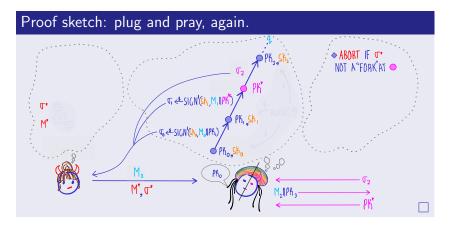
#### Theorem 6



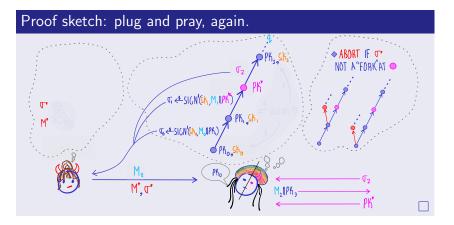
#### Theorem 6



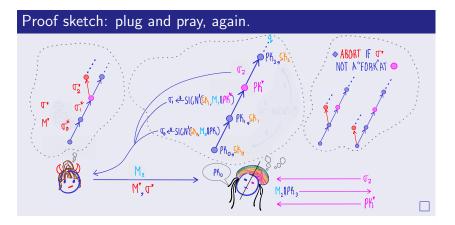
#### Theorem 6



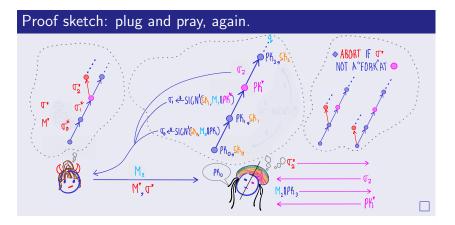
#### Theorem 6



#### Theorem 6



#### Theorem 6



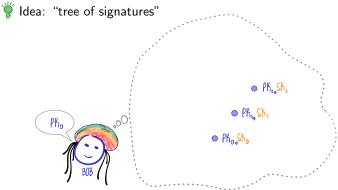
The size of signatures in  $\Sigma^s$  grows linearly with the number of signatures issued by the signer. How to fix this?

The size of signatures in  $\Sigma^s$  grows linearly with the number of signatures issued by the signer. How to fix this?

☆ Idea: "tree of signatures"

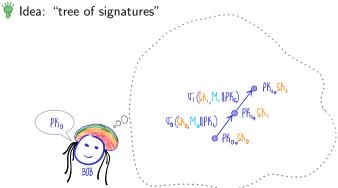
Exercise 3 (Shorter stateful signature

The size of signatures in  $\Sigma^s$  grows linearly with the number of signatures issued by the signer. How to fix this?



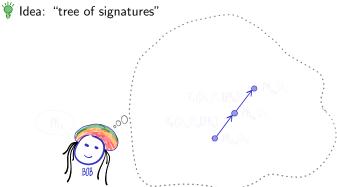
Exercise 3 (Shorter stateful signature

The size of signatures in  $\Sigma^s$  grows linearly with the number of signatures issued by the signer. How to fix this?



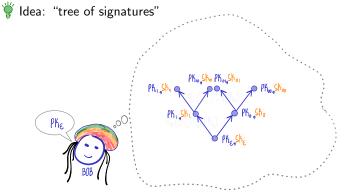
Exercise 3 (Shorter stateful signature

The size of signatures in  $\Sigma^s$  grows linearly with the number of signatures issued by the signer. How to fix this?



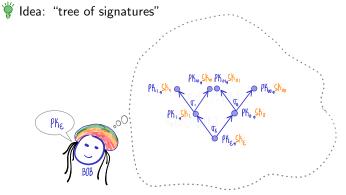
Exercise 3 (Shorter stateful signature

The size of signatures in  $\Sigma^s$  grows linearly with the number of signatures issued by the signer. How to fix this?



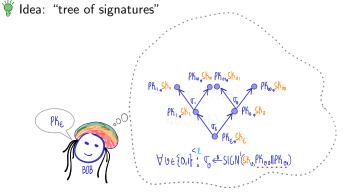
Exercise 3 (Shorter stateful signature

The size of signatures in  $\Sigma^s$  grows linearly with the number of signatures issued by the signer. How to fix this?



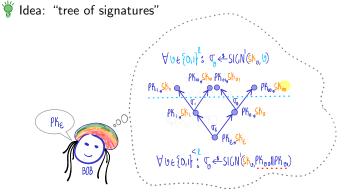
Exercise 3 (Shorter stateful signature

The size of signatures in  $\Sigma^s$  grows linearly with the number of signatures issued by the signer. How to fix this?



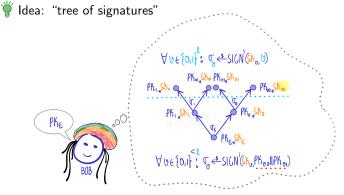
Exercise 3 (Shorter stateful signature

The size of signatures in  $\Sigma^s$  grows linearly with the number of signatures issued by the signer. How to fix this?



Exercise 3 (Shorter stateful signature

The size of signatures in  $\Sigma^s$  grows linearly with the number of signatures issued by the signer. How to fix this?



#### Exercise 3 (Shorter stateful signature)

► Short stateful signature  $\Sigma^{ss}$  + pseudo-random function  $F_{K} : \{0,1\}^{\ell+1} \rightarrow \{0,1\}^{\lambda} \Rightarrow \text{signature } \Sigma$ 

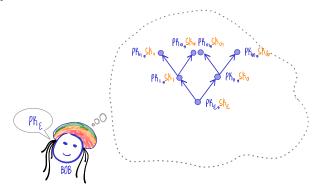
► Short stateful signature  $\Sigma^{ss}$  + pseudo-random function  $F_{K}: \{0,1\}^{\ell+1} \rightarrow \{0,1\}^{\lambda} \Rightarrow \text{signature } \Sigma$ 

👹 Idea: Use to *Derandomise* OTS signature and key gen.

Exercise 4 (EU-CMA signature)

► Short stateful signature  $\Sigma^{ss}$  + pseudo-random function  $F_{K}: \{0,1\}^{\ell+1} \rightarrow \{0,1\}^{\lambda} \Rightarrow \text{signature } \Sigma$ 

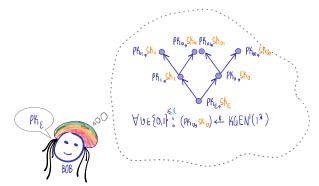
₿ Idea: Use to *Derandomise* OTS signature and key gen.



Exercise 4 (EU-CMA signature)

► Short stateful signature  $\Sigma^{ss}$  + pseudo-random function  $F_{K}: \{0,1\}^{\ell+1} \rightarrow \{0,1\}^{\lambda} \Rightarrow \text{signature } \Sigma$ 

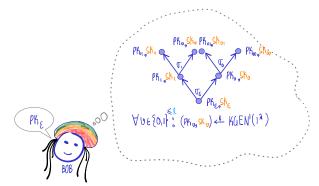
Value of the second sec



Exercise 4 (EU-CMA signature)

► Short stateful signature  $\Sigma^{ss}$  + pseudo-random function  $F_{K}: \{0,1\}^{\ell+1} \rightarrow \{0,1\}^{\lambda} \Rightarrow \text{signature } \Sigma$ 

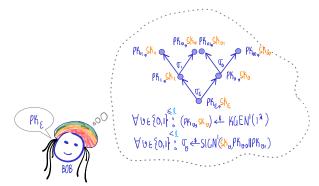
👹 Idea: Use to *Derandomise* OTS signature and key gen.



Exercise 4 (EU-CMA signature)

► Short stateful signature  $\Sigma^{ss}$  + pseudo-random function  $F_{K}: \{0,1\}^{\ell+1} \rightarrow \{0,1\}^{\lambda} \Rightarrow \text{signature } \Sigma$ 

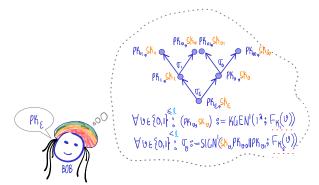
Value of the second sec



Exercise 4 (EU-CMA signature)

► Short stateful signature  $\Sigma^{ss}$  + pseudo-random function  $F_{K}: \{0,1\}^{\ell+1} \rightarrow \{0,1\}^{\lambda} \Rightarrow \text{signature } \Sigma$ 

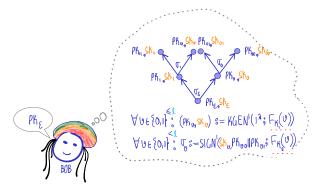
Value of the second sec



Exercise 4 (EU-CMA signature)

► Short stateful signature  $\Sigma^{ss}$  + pseudo-random function  $F_{K}: \{0,1\}^{\ell+1} \rightarrow \{0,1\}^{\lambda} \Rightarrow \text{signature } \Sigma$ 

Value of the second sec



Exercise 4 (EU-CMA signature)

#### Plan for this Session

Digital Signature: Syntax and Modelling Security

**One-Time Signatures** 

Many-Time (Stateful) Signatures

Efficient Signatures via Hash-and-Sign

Wrapping Up

#### Efficient Signatures via Hash-then-Invert...

Efficient schemes under stronger hardness assumptions

#### Efficient Signatures via Hash-then-Invert...

- Efficient schemes under stronger hardness assumptions
- ▶ Trapdoor (one-way) permutation  $F, F^{-1} : D \to D$

- Efficient schemes under stronger hardness assumptions
  Trapdoor (one-way) permutation F, F<sup>-1</sup> : D → D
  - Syntax:



- ► RSA perm.: F(x) := x<sup>e</sup> mod N and F<sup>-1</sup>(y) := y<sup>d</sup> mod N, where ed = 1 mod φ(N)
- From indistinguishability obfuscation and OWF

► Efficient schemes under stronger hardness assumptions
 ► Trapdoor (one-way) permutation F, F<sup>-1</sup> : D → D
 ► Syntax:





Security: one-way without the knowledge of the trapdoor

Instantiations of TDP

- ► RSA perm.: F(x) := x<sup>e</sup> mod N and F<sup>-1</sup>(y) := y<sup>d</sup> mod N, where ed = 1 mod φ(N)
- From indistinguishability obfuscation and OWF

► Efficient schemes under stronger hardness assumptions
 ► Trapdoor (one-way) permutation F, F<sup>-1</sup> : D → D
 ► Syntax:



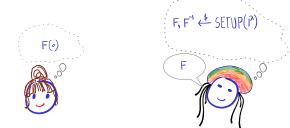


Security: one-way without the knowledge of the trapdoor

Instantiations of TDP

- ► RSA perm.: F(x) := x<sup>e</sup> mod N and F<sup>-1</sup>(y) := y<sup>d</sup> mod N, where ed = 1 mod φ(N)
- From indistinguishability obfuscation and OWF

► Efficient schemes under stronger hardness assumptions
 ► Trapdoor (one-way) permutation F, F<sup>-1</sup> : D → D
 ► Syntax:



Security: one-way without the knowledge of the trapdoor Instantiations of TDP

- ► RSA perm.: F(x) := x<sup>e</sup> mod N and F<sup>-1</sup>(y) := y<sup>d</sup> mod N, where ed = 1 mod φ(N)
- From indistinguishability obfuscation and OWF

► Efficient schemes under stronger hardness assumptions
 ► Trapdoor (one-way) permutation F, F<sup>-1</sup> : D → D
 ► Syntax:

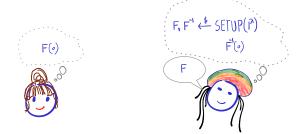




Security: one-way without the knowledge of the trapdoor Instantiations of TDP

- ▶ RSA perm.: F(x) := x<sup>e</sup> mod N and F<sup>-1</sup>(y) := y<sup>d</sup> mod N, where ed = 1 mod φ(N)
- From indistinguishability obfuscation and OWF

► Efficient schemes under stronger hardness assumptions
 ► Trapdoor (one-way) permutation F, F<sup>-1</sup> : D → D
 ► Syntax:



Security: one-way without the knowledge of the trapdoor

Instantiations of TDP

▶ RSA perm.:  $F(x) := x^e \mod N$  and  $F^{-1}(y) := y^d \mod N$ , where  $ed = 1 \mod \phi(N)$ 

From indistinguishability obfuscation and OWF

► TDP  $(F, F^{-1})$  over domain  $\mathcal{D}$  + hash function  $H : \{0, 1\}^* \to \mathcal{D} \Rightarrow$  signature  $\Sigma$  for  $\mathcal{M} := \{0, 1\}^*$ 

► TDP  $(F, F^{-1})$  over domain  $\mathcal{D}$  + hash function  $H : \{0, 1\}^* \to \mathcal{D} \Rightarrow \text{signature } \Sigma \text{ for } \mathcal{M} := \{0, 1\}^*$ 



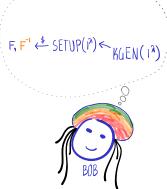
**у** вов

Efficient: compact public key and short signatures

KGEN(1<sup>2</sup>)

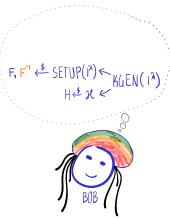
► TDP  $(F, F^{-1})$  over domain  $\mathcal{D}$  + hash function  $H : \{0, 1\}^* \to \mathcal{D} \Rightarrow \text{signature } \Sigma \text{ for } \mathcal{M} := \{0, 1\}^*$ 





► TDP  $(F, F^{-1})$  over domain  $\mathcal{D}$  + hash function  $H : \{0, 1\}^* \to \mathcal{D} \Rightarrow \text{signature } \Sigma \text{ for } \mathcal{M} := \{0, 1\}^*$ 



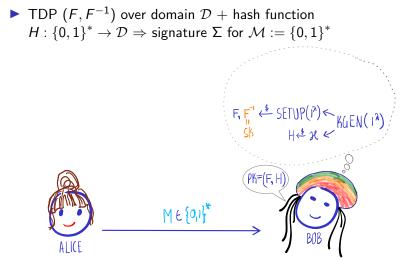


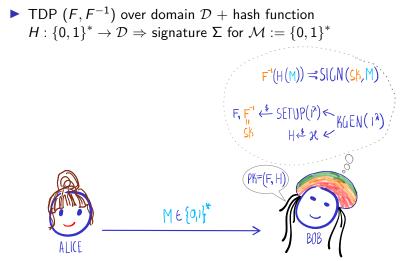
F, F<sup>-1</sup> ← SETUP(P) ← KGEN(1<sup>2</sup>) SK H ← X ←

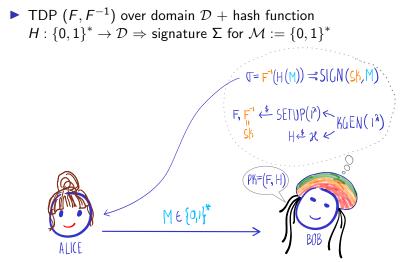
PK=(F, H

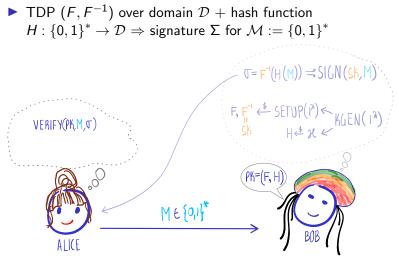
► TDP  $(F, F^{-1})$  over domain  $\mathcal{D}$  + hash function  $H : \{0, 1\}^* \to \mathcal{D} \Rightarrow \text{signature } \Sigma \text{ for } \mathcal{M} := \{0, 1\}^*$ 

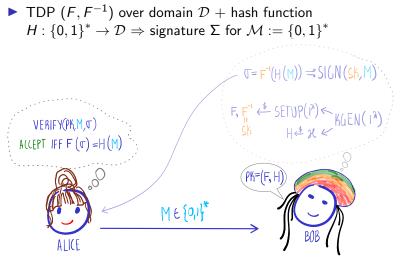


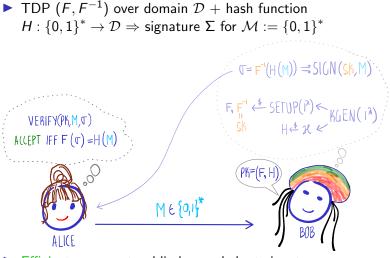






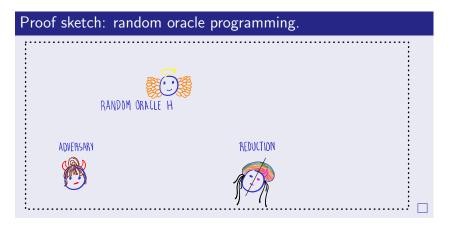




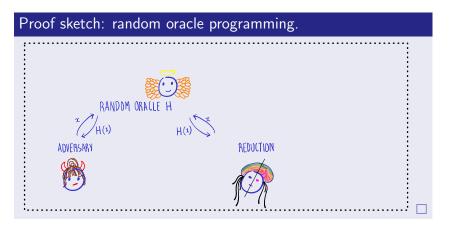


#### Theorem 7

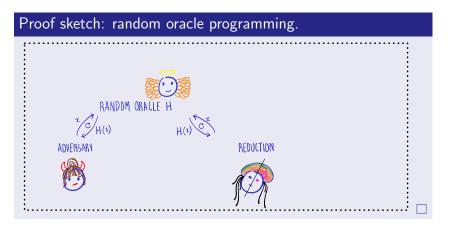
#### Theorem 7



#### Theorem 7

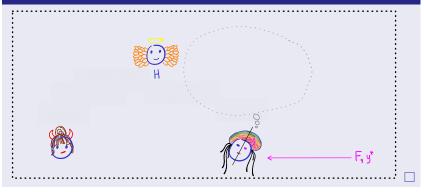


#### Theorem 7



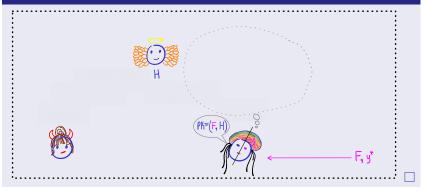
#### Theorem 7

If  $(F, F^{-1})$  is a TDP and H is a random oracle then  $\Sigma$  is secure.



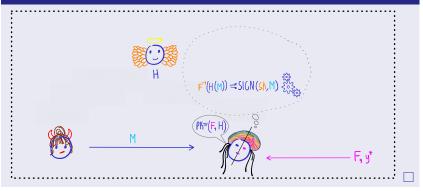
#### Theorem 7

If  $(F, F^{-1})$  is a TDP and H is a random oracle then  $\Sigma$  is secure.



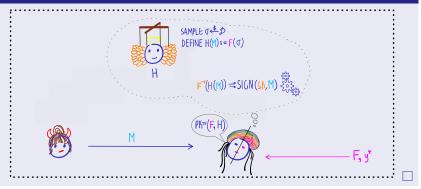
#### Theorem 7

If  $(F, F^{-1})$  is a TDP and H is a random oracle then  $\Sigma$  is secure.



#### Theorem 7

If  $(F, F^{-1})$  is a TDP and H is a random oracle then  $\Sigma$  is secure.



#### Theorem 7

If  $(F, F^{-1})$  is a TDP and H is a random oracle then  $\Sigma$  is secure.

## Proof sketch: random oracle programming. SAMPLE J + D DEFINE $H(M) := F(\sigma)$ $\mathbf{T} = \mathbf{F}^{-1}(\mathbf{F}(\mathbf{T})) = \mathbf{F}^{-1}(\mathbf{H}(\mathbf{M})) \rightrightarrows \mathrm{SIGN}(\mathbf{SK},\mathbf{M})$ OK (PK=(F, H))

#### Theorem 7

If  $(F, F^{-1})$  is a TDP and H is a random oracle then  $\Sigma$  is secure.

# Proof sketch: random oracle programming. SAMPLE $\sigma \notin \mathcal{D}$ DEFINE $H(h) := F(\sigma)$ H $\sigma = F^{*}(F(\sigma)) = F^{*}(H(h)) = SIGN(SK,M) OKI$

#### Theorem 7

If  $(F, F^{-1})$  is a TDP and H is a random oracle then  $\Sigma$  is secure.

## Proof sketch: random oracle programming. SAMPLE J + D DEFINE $H(M) := F(\sigma)$ $\sigma = \mathbf{F}^{-1}(\mathbf{F}(\sigma)) =$ M F(σ) PK=(F, H)) Μ

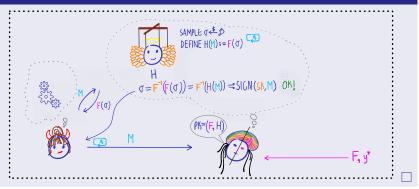
#### Theorem 7

If  $(F, F^{-1})$  is a TDP and H is a random oracle then  $\Sigma$  is secure.

## Proof sketch: random oracle programming. SAMPLE $\sigma \in \mathcal{P}$ DEFINE H(M) := F( $\sigma$ ) $\mathbf{T} = \mathbf{F}^{-1}(\mathbf{F}(\mathbf{T})) =$ M F(σ) PK=(F, H))

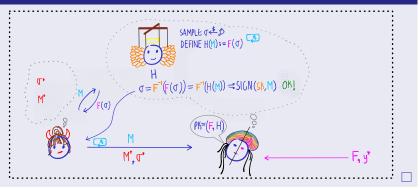
#### Theorem 7

If  $(F, F^{-1})$  is a TDP and H is a random oracle then  $\Sigma$  is secure.



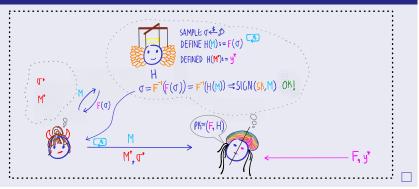
#### Theorem 7

If  $(F, F^{-1})$  is a TDP and H is a random oracle then  $\Sigma$  is secure.



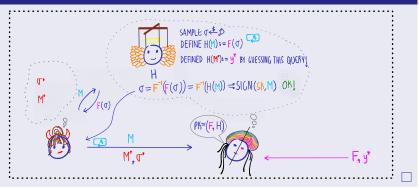
#### Theorem 7

If  $(F, F^{-1})$  is a TDP and H is a random oracle then  $\Sigma$  is secure.



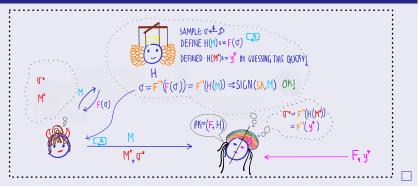
#### Theorem 7

If  $(F, F^{-1})$  is a TDP and H is a random oracle then  $\Sigma$  is secure.



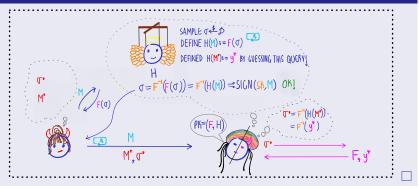
#### Theorem 7

If  $(F, F^{-1})$  is a TDP and H is a random oracle then  $\Sigma$  is secure.



#### Theorem 7

If  $(F, F^{-1})$  is a TDP and H is a random oracle then  $\Sigma$  is secure.



## Plan for this Session

Digital Signature: Syntax and Modelling Security

**One-Time Signatures** 

Many-Time (Stateful) Signatures

Efficient Signatures via Hash-and-Sign

Wrapping Up

- 1. Theoretical construction of signature using OWF and CRHF
  - CRHF can be replaced with *universal one-way* hash function (UOWHF), which can be constructed from OWF
  - Can be shown to be quantum secure



- 1. Theoretical construction of signature using OWF and CRHF
  - CRHF can be replaced with *universal one-way* hash function (UOWHF), which can be constructed from OWF
  - Can be shown to be quantum secure
- 2. Efficient constructions in ROM
  - RSA-PSS based on Hash-then-Invert
  - Other approach: Fiat-Shamir Transform (e.g., Schnorr)

- 1. Theoretical construction of signature using OWF and CRHF
  - CRHF can be replaced with *universal one-way* hash function (UOWHF), which can be constructed from OWF
  - Can be shown to be quantum secure \_\_\_\_\_
- 2. Efficient constructions in ROM
  - RSA-PSS based on Hash-then-Invert
  - Other approach: Fiat-Shamir Transform (e.g., Schnorr)



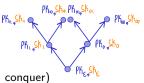
- 1. Theoretical construction of signature using OWF and CRHF
  - CRHF can be replaced with *universal one-way* hash function (UOWHF), which can be constructed from OWF
  - Can be shown to be quantum secure
- 2. Efficient constructions in ROM



- RSA-PSS based on Hash-then-Invert
- Other approach: Fiat-Shamir Transform (e.g., Schnorr)



- Constructive:
  - Bottom up constructive approach
  - Tree-based construction (divide and conquer)



#### Constructions:

- 1. Theoretical construction of signature using OWF and CRHF
  - CRHF can be replaced with *universal one-way* hash function (UOWHF), which can be constructed from OWF
  - Can be shown to be quantum secure
- 2. Efficient constructions in ROM

PK, SK

Phis Shi Phos Shoi

ph<sub>e</sub> She

- RSA-PSS based on Hash-then-Invert
- Other approach: Fiat-Shamir Transform (e.g., Schnorr)



- Constructive:
  - Bottom up constructive approach
  - Tree-based construction (divide and conquer)
- Proof techniques:
  - "Plug and pray"
  - Random oracle programming



Pha Sha

## Thank You for Your Attention! More Questions?





### References

- 1. Digital signature and its security models were formally studied in [GMR88]
- 2. Lamport's OTS is from [Lam79]
- 3. The stateful many-time signature is from [KL21], and is a in spirit with Merkle's signatures [Mer90]
- 4. The "hash-then-invert" paradigm in random-oracle model was studied in [BR93]

#### Mihir Bellare and Phillip Rogaway.

Random oracles are practical: A paradigm for designing efficient protocols.

In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby, editors, *ACM CCS 93*, pages 62–73. ACM Press, November 1993.



Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest.

A digital signature scheme secure against adaptive chosen-message attacks.

SIAM J. Comput., 17(2):281–308, 1988.



Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography, Third Edition. CRC Press, 2021.



Leslie Lamport.

Constructing digital signatures from a one-way function. Technical report, 1979.

Technical report, 19



Ralph C. Merkle.

A certified digital signature.

In Gilles Brassard, editor, *CRYPTO'89*, volume 435 of *LNCS*, pages 218–238. Springer, Heidelberg, August 1990.