Digital Signatures

Chethan Kamath

II'TB TRUST LAB

DIGITAL : SECURE : RESPONSIBLE

ACM Summer School 2024, 6/Jun/2024

1/28

Recall from Prior Sessions
SYMMETRIC KEY UNIVEASE

PUBLIC hEY UNIVEASE

KeyGen— K @

Enc(K,m;r)— C

SKE

Shared symmetric key

&
B

Ko

.-

Dec(K,C)» m’

MAC

HiBob | Mac(k, “Hi Bob”) = t !

If Verify(k, m, t) = 1, accept
Else, reject

Eve can add, delete, modify, etc

k

2/28

Recall from Prior Sessions
SYMMETRIC theY UNIVERSE PUBLIC KEY UNIVERSE
St PKE

KeyGen— (PK,SK)

Public and secret key

KeyGen— K @

Shared symmetric key

C @ ~] s C
P .B, 63
09 09
g Ko I
Enc(K,m;r)- C Dec(K,C)» m’ Enc(PK,m;r)— C Dec(SK,C)» m’

If Verify(k, m, t) = 1, accept
Else, reject
i ’

Eve can add, delete, modify, etc

2/28

Recall from Prior Sessions

SYMMETRIC keY UNIVERSE

PUBLIC hEY UNIVEASE

KeyGen— K @
Shared symmetric key
B
11 Ko~
Enc(K,m;r)— C Dec(K,C)» m’

PKE

KeyGen— (PK,SK)

Public and secret key

e

Enc(PK,m;r)- C Dec(SK,C)» m’

MAC

If Verify(k, m, t) = 1, accept
Else, reject

HiBob | Mac(k, “Hi Bob”) =t

Eve can add, delete, modify, etc

SIGN ATORES
SESINCHN)
o PhChBGENCY)

0/1:=VERIFY(Ph,M,0)

) O)
Y g Y
I
BB
ALICE 4
(VERIFER) (SIONER)

2/28

Plan for this Session

Digital Signature: Syntax and Modelling Security

3/28

Plan for this Session

Digital Signature: Syntax and Modelling Security

One-Time Signatures

3/28

Plan for this Session

Digital Signature: Syntax and Modelling Security

One-Time Signatures

Many-Time (Stateful) Signatures

3/28

Plan for this Session

Digital Signature: Syntax and Modelling Security

One-Time Signatures

Many-Time (Stateful) Signatures

Efficient Signatures via Hash-and-Sign

3/28

Plan for this Session

Digital Signature: Syntax and Modelling Security

One-Time Signatures

Many-Time (Stateful) Signatures

Efficient Signatures via Hash-and-Sign

Wrapping Up

3/28

Plan for this Session

Digital Signature: Syntax and Modelling Security

4/28

Digital (Analogues of Physical) Signatures

5/28

Digital (Analogues of Physical) Signatures

5/28

Digital (Analogues of Physical) Signatures

olfl

|
Z

5/28

Digital (Analogues of Physical) Signatures

olfl

|
'z

» Requirement: no one should be able to forge Bob's signature
4/28

Digital (Analogues of Physical) Signatures

» Requirement: no one should be able to forge Bob's signature

4/28

Digital (Analogues of Physical) Signatures

» Requirement: no one should be able to forge Bob's signature

4/28

Digital (Analogues of Physical) Signatures

» Requirement: no one should be able to forge Bob's signature

4/28

Digital (Analogues of Physical) Signatures

» Requirement: no one should be able to forge Bob's signature

4/28

Digital (Analogues of Physical) Signatures...

Fingerprints.

SHa-256
sHa1

6/28

Digital (Analogues of Physical) Signatures..

GoogleCloud ocumerttion Techncicgy > O, Saeh @ anguage ~

WIKIPEDIA

How Google enforces boot integrity on
production machines 1

hcton

ssckapond
Mschns e
Farowars s o i s e s

, st et
e save ny pasewors for Measured boot process
L—
‘ i
Bheion. abou : 7

[r—.

| et

Fingerprints.

Hardware reot of trust

6/28

Digital (Analogues of Physical) Signatures...

WIKIPEDIA

Fingerprints.

SHA-256 0
sha1 e

» Application to blockchains protocols like Algorand and Chia.

Google Cloud ~ ocumsntaon

Tecmoogy > Q Sesrch

How Google enforces boot integrity on pr—
production machines 1

Measured boot process

| e

| oot

Boot firmware

| ot

6/28

Syntax

» Public-key analogue of message authentication codes (MAC)
» Triple of algorithms: (KGEN, SIGN, VERIFY)

7/28

Syntax

» Public-key analogue of message authentication codes (MAC)
» Triple of algorithms: (KGEN, SIGN, VERIFY)

ALICE
(VEPIFIER) (SIGNER)

7/28

Syntax

» Public-key analogue of message authentication codes (MAC)
» Triple of algorithms: (KGEN, SIGN, VERIFY)

ALICE
(VEPIFIER) (SIGNER)

7/28

Syntax

» Public-key analogue of message authentication codes (MAC)
» Triple of algorithms: (KGEN, SIGN, VERIFY)

oh Ch < BLENG):

ALICE
(VEPIFIER) (SIGNER)

7/28

Syntax

» Public-key analogue of message authentication codes (MAC)
» Triple of algorithms: (KGEN, SIGN, VERIFY)

oh Ch < BLENG):

ALICE
(VEPIFIER) (SIGNER)

7/28

Syntax

» Public-key analogue of message authentication codes (MAC)
» Triple of algorithms: (KGEN, SIGN, VERIFY)

TEYNE)
ph < HOEN() !

ALICE
(VEPIFIER) (SIGNER)

7/28

Syntax

» Public-key analogue of message authentication codes (MAC)
» Triple of algorithms: (KGEN, SIGN, VERIFY)

TEYNE)
ph < HOEN() !

O/} s=VERFY R M,0)

ALICE
(VEPIFIER) (SIGNER)

7/28

Security: Universal Unforgeability under Key-Only Attack
RRRK BACAK ATTACK

8/28

Security: Universal Unforgeability under Key-Only Attack

RRRK

(FOPGER)

BACAK

“ATTACK

(CHALLENGER)

5

BOB

8/28

Security: Universal Unforgeability under Key-Only Attack
RRRK BACAK ATTACK

oh Ch <= HENCP)

8/28

Security: Universal Unforgeability under Key-Only Attack
RRRK BACAK ATTACK

oh Ch <= HENCP)

8/28

Security: Universal Unforgeability under Key-Only Attack
RRRK BACAK ATTACK

oh Ch <= HENCP)

8/28

Security: Universal Unforgeability under Key-Only Attack
RRRK BACAK ATTACK

b bk HENGY):

8/28

Security: Universal Unforgeability under Key-Only Attack
RRRK BACAK ATTACK

b bk HENGY):

8/28

Security: Universal Unforgeability under Key-Only Attack

RR R K BAEAKW "ATTACK
BN L phcheHEN():
VERIEY (PR M O)= | e E
) o ‘ Y

8/28

Security: Universal Unforgeability under Key-Only Attack

AR R BAEAL "ATTACK
T S TG
VERIFY (PR M O)= 1 S g
i ‘
ALICE
Definition 1

A scheme is UU-KOA secure if no PPT forger can break as above
with a non-negligible probability.

8/27

Security: Existential Unforg. under Key-Only Attack
RRRR ¥~

9/28

Security: Existential Unforg. under Key-Only Attack

V=1

Pll)g% ed'; H(JEN O 'A)

9/28

Security: Existential Unforg. under Key-Only Attack

V=1

Pll)g% ed'; H(JEN O 'A)

9/28

Security: Existential Unforg. under Key-Only Attack
RRARR V¥~

Pll)g% ed'; H(JEN O 'A)

9/28

Security: Existential Unforg. under Key-Only Attack
RRARR V¥~

BAEAKS I

VERRY(Y)= | gt RN

9/28

Security: Existential Unforg. under Key-Only Attack
RRRR

BREAKS (F

VERRY(Y)= | gt RN

ALICE

Definition 2

A scheme is EU-KOA secure if no PPT forger can break as above
with a non-negligible probability.

9/27

Security: Existential Unforg. under Chosen-Message Attack

h 1 HENE):

e

10/28

Security: Existential Unforg. under Chosen-Message Attack
RR R K

h 1 HENE):

MeM

10/28

Security: Existential Unforg. under Chosen-Message Attack
RR R K

LeSSONEH)
h 1 HENE):

MeM

10/28

Security: Existential Unforg. under Chosen-Message Attack
RR R K

Loasney
Phch << HUENGP)

10/28

Security: Existential Unforg. under Chosen-Message Attack
RR R K

Loasney
Phch << HUENGP)

5

10/28

Security: Existential Unforg. under Chosen-Message Attack
RR R K

Loasney

BHEAK
o VERNYPRM)= | Ph Ch <2 HUENGY)

o e al: M* Mo

5

10/28

Security: Existential Unforg. under Chosen-Message Attack
RR R K

Lo dsneny

BRCAKS (F :
o VERNYPRM)= | L phch e KGENGY)S

o Ve ml: MM

ALICE

Definition 3

A scheme is EU-CMA secure if no PPT forger can break as above
with a non-negligible probability.

10/27

Plan for this Session

One-Time Signatures

11/28

One-Time Signatures (¢ = 1): Lamport’s Signature

> One-way func. : {0,1}* = {0,1}* = OTS for M := {0,1}*

12/28

One-Time Signatures (¢ = 1): Lamport’s Signature

> One-way func. f : {0,1}* = {0,1}* = OTS for M := {0,1}*

12/28

One-Time Signatures (¢ = 1): Lamport’s Signature

> One-way func. f : {0,1}* = {0,1}* = OTS for M := {0,1}*"*

12/28

One-Time Signatures (¢ = 1): Lamport’s Signature
> One-way func. f : {0,1}* = {0,1}* = OTS for M := {0,1}*"*

Xos [Lo | Xas| X =Ch <
KGENC1Y)

150
Yoo | Yio| Y w0]Y | _pp &~
Yo | Yu[YulY s Ph
»»»»»»» Q
= O

12/28

One-Time Signatures (¢ = 1): Lamport’s Signature

> One-way func. f : {0,1}* = {0,1}* = OTS for M := {0,1}*"*

o] X | Las| X)1{)
Xo X i}(,)x &KOEN(FR)

Yoo | Yio| Y w0]Y | _pp &~
g 31 PI[]

M=10N

12/28

One-Time Signatures (¢ = 1): Lamport’s Signature

> One-way func. f : {0,1}* = {0,1}* = OTS for M := {0,1}*"*

SION(CE,)

0 | A 31)1{)
Xoe[X i;(’)x &KOEN(FR)

Joo| Y10

12/28

One-Time Signatures (g = 1): Lamport’s Signature

> One-way func. f : {0,1}* = {0,1}* = OTS for M := {0,1}*"*

sl BT N

Xoo|Xio] Xao| Xso| _ l/
Xoo [Xu| Xo| Xa| =

50 HENC)

Joo| Y10

12/28

One-Time Signatures (g = 1): Lamport’s Signature

> One-way func. f : {0,1}* = {0,1}* = OTS for M := {0,1}*"*

o0 SIONCen M)

:g]/) -
KGENC1Y)

12/28

One-Time Signatures (¢ = 1): Lamport’s Signature

> One-way func. f : {0,1}* = {0,1}* = OTS for M := {0,1}*"*

I VERIFYORIT)

, X
¢ Lo X | X

—| Jo0) Y0 Y0 [Y 50
: Ph Yo [Yu [Ya [Ys

M=10N

12/28

One-Time Signatures (¢ = 1): Lamport’s Signature

> One-way func. f : {0,1}* = {0,1}* = OTS for M := {0,1}*"*

< VERFYORMO)

Xy

p.&Y)

Yu

12/28

One-Time Signatures (¢ = 1): Lamport’s Signature

> One-way func. f : {0,1}* = {0,1}* = OTS for M := {0,1}*"*

< VERFYORMO)

N q:
L Phe

X

Lo

Xy

p.&Y)

$0)

I

30\

Yu

Y

non

12/28

One-Time Signatures (¢ = 1): Lamport's Signature...

If f is a OWF then Lamport’s scheme is a one-time signature.

13/28

One-Time Signatures (¢ = 1): Lamport's Signature...

Theorem 4

If f is a OWF then Lamport’s scheme is a one-time signature.

Proof sketch: proof by reduction. Idea: “plug and pray”.

ADVERSARY AEDUCTION

W)

13/28

One-Time Signatures (¢ = 1): Lamport's Signature...

Theorem 4

If f is a OWF then Lamport’s scheme is a one-time signature.

Proof sketch: proof by reduction. Idea: “plug and pray”.

13/28

One-Time Signatures (¢ = 1): Lamport's Signature...

Theorem 4

If f is a OWF then Lamport’s scheme is a one-time signature.

Proof sketch: proof by reduction. Idea: “plug and pray”.

13/28

One-Time Signatures (¢ = 1): Lamport's Signature...

Theorem 4

If f is a OWF then Lamport’s scheme is a one-time signature.

Proof sketch: proof by reduction. Idea: “plug and pray”.

13/28

One-Time Signatures (¢ = 1): Lamport's Signature...

Theorem 4

If f is a OWF then Lamport’s scheme is a one-time signature.

Proof sketch: proof by reduction. Idea: “plug and pray”.

13/28

One-Time Signatures (¢ = 1): Lamport's Signature...

If f is a OWF then Lamport’s scheme is a one-time signature.

Proof sketch: proof by reduction. Idea: “plug and pray”.

— {0,1}%

59

Ph:ﬂm Bzu N
3’ ﬂzrblt’ic'\‘]r',v‘
e R

13/28

One-Time Signatures (¢ = 1): Lamport's Signature...

If f is a OWF then Lamport’s scheme is a one-time signature.

Proof sketch: proof by reduction. Idea: “plug and pray”.

50 O NBRT F M(b
Ph*:‘.im Yuld]
. 5’ ‘jmb",{m}"ﬁ .
LT
M o (Ef‘g N o

X

13/28

One-Time Signatures (¢ = 1): Lamport's Signature...

If f is a OWF then Lamport’s scheme is a one-time signature.

Proof sketch: proof by reduction. Idea: “plug and pray”.

13

,", T t =b'.7
o i @ R0RT P M ;
Juldn] 75
[[3ufda] bt

13/28

One-Time Signatures (¢ = 1): Lamport's Signature...

If f is a OWF then Lamport’s scheme is a one-time signature.

Proof sketch: proof by reduction. Idea: “plug and pray”.

13/28

One-Time Signatures (¢ = 1): Lamport's Signature...

If f is a OWF then Lamport’s scheme is a one-time signature.

Proof sketch: proof by reduction. Idea: “plug and pray”.

- ; o MORT F M(t)s5
a " o ABORT IF MY
M=yon
M, y*

13/28

One-Time Signatures (¢ = 1): Lamport's Signature...

If f is a OWF then Lamport’s scheme is a one-time signature.

Proof sketch: proof by reduction. Idea: “plug and pray”.

C o ABORT IF M{)sb
L @ ABORT IF MTe1sv -

X

13/28

One-Time Signatures (¢ = 1): Lamport's Signature...

If f is a OWF then Lamport’s scheme is a one-time signature.

Proof sketch: proof by reduction. Idea: “plug and pray”.

C o ABORT IF M{)sb
L @ ABORT IF MTe1sv -
C He)rl

X

13/28

One-Time Signatures (¢ = 1): Lamport's Signature...

If f is a OWF then Lamport’s scheme is a one-time signature.

Proof sketch: proof by reduction. Idea: “plug and pray”.

C o ABORT IF M{)sb
L @ ABORT IF MTe1sv -
C He)rl

kS

13/28

One-Time Signatures (¢ = 1): Lamport's Signature...

If f is a OWF then Lamport’s scheme is a one-time signature.

Proof sketch: proof by reduction. Idea: “plug and pray”.

C o ABORT IF M{)sb
L @ ABORT IF MTe1sv -
)L

; .
M=10N N .
M, T é y*
ANALYSIS: BB INVERTS & AT y* W ALKE FORGES A ABDRT .

13/28

One-Time Signatures (¢ = 1): Lamport's Signature...

If f is a OWF then Lamport’s scheme is a one-time signature.

Proof sketch: proof by reduction. Idea: “plug and pray”.

C o ABORT IF M{)sb
L @ ABORT IF MTe1sv -
YIRS

kS

ANNLYSIS: PeB0B INVERTS § AT &) = Pr(ALCE FORGES A ABORT] B

13/28

One-Time Signatures (¢ = 1): Lamport's Signature...

If f is a OWF then Lamport’s scheme is a one-time signature.

Proof sketch: proof by reduction. Idea: “plug and pray”.

C o ABORT IF M{)sb
L @ ABORT IF MTe1sv -
)L

kS

ANALYSIS: Pr[BOB INVERTS 4 AT 3] 2 Pr[ALKE FORGES | ABORT]-)oy -

13/28

One-Time Signatures: Lamport’s Signature...

Exercise 1

» Can a forger break EU-CMA given two signatures?

» What happens if we fix i* = Q in the proof?

» Are the signatures unique? If not, can it be made unique?

14 /28

One-Time Signatures: Lamport’s Signature...

Exercise 1

» Can a forger break EU-CMA given two signatures?

» What happens if we fix i* = Q in the proof?

» Are the signatures unique? If not, can it be made unique?

If f is a OWF then Lamport’s scheme is a one-time signature

14 /28

One-Time Signatures: Lamport’s Signature...

Exercise 1

» Can a forger break EU-CMA given two signatures?
» What happens if we fix i* = Q in the proof?
» Are the signatures unique? If not, can it be made unique?

Theorem 5

If f is a OWF then Lamport’s scheme is a one-time signature for
fixed-length messages.

Exercise 2 (Domain Extension)

Given a collision-resistant hash function H : {0,1}* — {0,1}*,
construct a OTS for arbitrary-length messages.

14 /28

Plan for this Session

Many-Time (Stateful) Signatures

15/28

(Many-Time) Signatures with Stateful Signer

» Syntax: same as before except that SIGN is statefu/

16/28

(Many-Time) Signatures with Stateful Signer

ALICE
(VERIFIER) (SIGNER)

16/28

(Many-Time) Signatures with Stateful Signer

(SIGNER)

16/28

(Many-Time) Signatures with Stateful Signer

(SIGNER)

16/28

(Many-Time) Signatures with Stateful Signer

(SIGNER)

» Security: same as before (i.e., forger not given any state)

15/26

(Many-Time) Stateful Signatures

» OTS £! = (KGEN', SIGN', VERIFY!) = stateful signature ¥°.

17/28

(Many-Time) Stateful Signatures

» OTS £! = (KGEN', SIGN', VERIFY!) = stateful signature ¥°.
Q Idea: “chain signatures”

17/28

(Many-Time) Stateful Signatures

» OTS £! = (KGEN', SIGN', VERIFY!) = stateful signature ¥°.
9 Idea: “chain signatures”

17/28

(Many-Time) Stateful Signatures

» OTS £! = (KGEN', SIGN', VERIFY!) = stateful signature ¥°.
g Idea: “chain signatures”

17/28

(Many-Time) Stateful Signatures

» OTS £! = (KGEN', SIGN', VERIFY!) = stateful signature ¥°.
g Idea: “chain signatures”

17/28

(Many-Time) Stateful Signatures

» OTS £! = (KGEN', SIGN', VERIFY!) = stateful signature ¥°.
9 Idea: “chain signatures”

Pho L

17/28

(Many-Time) Stateful Signatures

» OTS £! = (KGEN', SIGN', VERIFY!) = stateful signature ¥°.
9 Idea: “chain signatures”

17/28

(Many-Time) Stateful Signatures

» OTS X! = (KGEN!, SIGN!, VERIFY!) = stateful signature °.
9 Idea: “chain signatures”

15 PHZ?%L
G < SIGNH, M, 19K S~

S RO ¢

/

17/28

(Many-Time) Stateful Signatures

» OTS X! = (KGEN!, SIGN!, VERIFY!) = stateful signature °.
9 Idea: “chain signatures”

17/28

(Many-Time) Stateful Signatures

» OTS X! = (KGEN!, SIGN!, VERIFY!) = stateful signature °.
9 Idea: “chain signatures”

17/28

(Many-Time) Stateful Signatures

» OTS £! = (KGEN', SIGN', VERIFY!) = stateful signature ¥°.

17/28

(Many-Time) Stateful Signatures

» OTS X! = (KGEN!, SIGN!, VERIFY!) = stateful signature °.
g Idea: “chain signatures”

VP 1, O
: M

17/28

(Many-Time) Stateful Signatures

» OTS X! = (KGEN!, SIGN!, VERIFY!) = stateful signature °.
g Idea: “chain signatures”

VRPN, O
H (@M PHD)

17/28

(Many-Time) Stateful Signatures

» OTS X! = (KGEN!, SIGN!, VERIFY!) = stateful signature °.
g Idea: “chain signatures”

VRPN, O
H (@M PHD)

.'. PFH ."':
‘;vmw‘(mm(rf
:'. PF] e -

o .

17/28

(Many-Time) Stateful Signatures

» OTS X! = (KGEN!, SIGN!, VERIFY!) = stateful signature °.
g Idea: chaln signatures”

17/28

(Many-Time) Stateful Signatures

» OTS X! = (KGEN!, SIGN!, VERIFY!) = stateful signature °.
9 Idea: chaln signatures”

17/28

(Many-Time) Stateful Signatures...

If 1 is an OTS supporting arbitrary-length messages then ¥° is a
stateful signature.

18/28

(Many-Time) Stateful Signatures...

Theorem 6

If 1 is an OTS supporting arbitrary-length messages then ¥° is a
stateful signature.

Proof sketch: plug and pray, again.

ADVERSARY REDUCTION

18/28

(Many-Time) Stateful Signatures...

Theorem 6

If 1 is an OTS supporting arbitrary-length messages then ¥° is a
stateful signature.

Proof sketch: plug and pray, again.

18/28

(Many-Time) Stateful Signatures...

Theorem 6

If 1 is an OTS supporting arbitrary-length messages then ¥° is a
stateful signature.

':[:L\ ‘.‘
o

Proof sketch: plug and pray, again.

18/28

(Many-Time) Stateful Signatures...

Theorem 6

If 1 is an OTS supporting arbitrary-length messages then ¥° is a
stateful signature.

.

Proof sketch: plug and pray, again.

18/28

(Many-Time) Stateful Signatures...

Theorem 6

If 1 is an OTS supporting arbitrary-length messages then ¥° is a
stateful signature.

Proof sketch: plug and pray, again.
. RN
o,

‘e Ph \

4
I (A
ot £ HGEN (Y

o 0

18/28

(Many-Time) Stateful Signatures...

Theorem 6

If 1 is an OTS supporting arbitrary-length messages then ¥° is a
stateful signature.

Proof sketch: plug and pray, again.

18/28

(Many-Time) Stateful Signatures...

Theorem 6

If 1 is an OTS supporting arbitrary-length messages then ¥° is a
stateful signature.

Proof sketch: plug and pray, again.

O'PHZQ

o fh

th,
%esw Ml lPif?

18/28

(Many-Time) Stateful Signatures...

Theorem 6

If 1 is an OTS supporting arbitrary-length messages then ¥° is a
stateful signature.

Proof sketch: plug and pray, again.

18/28

(Many-Time) Stateful Signatures...

Theorem 6

If 1 is an OTS supporting arbitrary-length messages then ¥° is a
stateful signature.

Proof sketch: plug and pray, again.

18/28

(Many-Time) Stateful Signatures...

Theorem 6

If 1 is an OTS supporting arbitrary-length messages then ¥° is a
stateful signature.

Proof sketch: plug and pray, again.

18/28

(Many-Time) Stateful Signatures...

Theorem 6

If 1 is an OTS supporting arbitrary-length messages then ¥° is a
stateful signature.

Proof sketch: plug and pray, again.

18/28

(Many-Time) Stateful Signatures...

Theorem 6

If 1 is an OTS supporting arbitrary-length messages then ¥° is a
stateful signature.

Proof sketch: plug and pray, again.

18/28

(Many-Time) Stateful Signatures...

Theorem 6

If 1 is an OTS supporting arbitrary-length messages then ¥° is a
stateful signature.

Proof sketch: plug and pray, again.

18/28

(Many-Time) Stateful Signatures...

Theorem 6

If 1 is an OTS supporting arbitrary-length messages then ¥° is a
stateful signature.

Proof sketch: plug and pray, again.

18/28

(Many-Time) Stateful Signatures...

Theorem 6

If 1 is an OTS supporting arbitrary-length messages then ¥° is a
stateful signature.

Proof sketch: plug and pray, again.
amcacoameot q, — |

N
" NOT AVFORKAT @

18/28

(Many-Time) Stateful Signatures...

Theorem 6

If 1 is an OTS supporting arbitrary-length messages then ¥° is a
stateful signature.

Proof sketch: plug and pray, again.

B G -

18/28

(Many-Time) Stateful Signatures...

Theorem 6

If 1 is an OTS supporting arbitrary-length messages then ¥° is a
stateful signature.

Proof sketch: plug and pray, again.

B G -

18/28

(Many-Time) Stateful Signatures...

Theorem 6

If 1 is an OTS supporting arbitrary-length messages then ¥° is a
stateful signature.

Proof sketch: plug and pray, again.

B G -

18/28

(Many-Time) Stateful Signatures...

@ The size of signatures in 2° grows linearly with the number of
signatures issued by the signer. How to fix this?

19/28

(Many-Time) Stateful Signatures...

X The size of signatures in X° grows linearly with the number of
signatures issued by the signer. How to fix this?

ol .
Q ldea: “tree of signatures”

19/28

(Many-Time) Stateful Signatures...

@ The size of signatures in X° grows linearly with the number of
signatures issued by the signer. How to fix this?

ol .
Q ldea: “tree of signatures”

o Ph,Ch,

19/28

(Many-Time) Stateful Signatures...

@ The size of signatures in X° grows linearly with the number of
signatures issued by the signer. How to fix this?

ol .
Q ldea: “tree of signatures”

19/28

(Many-Time) Stateful Signatures...

@ The size of signatures in X° grows linearly with the number of
signatures issued by the signer. How to fix this?

ol .
Q ldea: “tree of signatures”

19/28

(Many-Time) Stateful Signatures...

@ The size of signatures in X° grows linearly with the number of
signatures issued by the signer. How to fix this?

ol .
Q ldea: “tree of signatures”

.
i g™! 00

19/28

(Many-Time) Stateful Signatures...

@ The size of signatures in X° grows linearly with the number of
signatures issued by the signer. How to fix this?

ol .
Q ldea: “tree of signatures”

C PhaCh Pha S
h,)

P,

.
i g™! 00

19/28

(Many-Time) Stateful Signatures...

@ The size of signatures in X° grows linearly with the number of
signatures issued by the signer. How to fix this?

g u“ . "
Q ldea: “tree of signatures

<[
.

Voeiout T <SINE PulPhy)

19/28

(Many-Time) Stateful Signatures...

@ The size of signatures in X° grows linearly with the number of
signatures issued by the signer. How to fix this?

g u“ . "
Q ldea: “tree of signatures

Vbeiow}:%ész\(em) :
Phn Gl Pho S
Q

.
=100

<[
.

Voeiout T <SINE PulPhy)

19/28

(Many-Time) Stateful Signatures...

@ The size of signatures in X° grows linearly with the number of
signatures issued by the signer. How to fix this?

ol .
Q ldea: “tree of signatures”

Vbeiowh%ésmN\(em) :
Phn Gl Pho S
Q

.
o' 00

<
.

Voeiout T <SINE PulPhy)

Exercise 3 (Shorter stateful signature)

Prove that the construction ¥ is secure. (Hint: plug and pray.)
%

18/26

(Many-Time) Signatures

» Short stateful signature ¥%° 4 pseudo-random function
Fx : {0, 1}Hl — {0,1}* = signature ¥

20/28

(Many-Time) Signatures

» Short stateful signature ¥%° 4 pseudo-random function
Fx : {0, 1}Hl — {0,1}* = signature ¥

)/

& Idea: Use to Derandomise OTS signature and key gen.

20/28

(Many-Time) Signatures

» Short stateful signature ¥%° 4 pseudo-random function
Fx : {0,1}"1 — {0,1}* = signature ¥
@’ Idea: Use to Derandomise OTS signature and key gen.

S b S P

PH‘ g\"\ Pha‘,%ﬂ

20/28

(Many-Time) Signatures

» Short stateful signature ¥%° 4 pseudo-random function
Fx : {0,1}"1 — {0,1}* = signature ¥
@’ Idea: Use to Derandomise OTS signature and key gen.

Ph S Pho i
Q@

S Pho e

Py\\,%\ Ph“%u

¥,
Foeiolt (o)<t KENU)

20/28

(Many-Time) Signatures

» Short stateful signature ¥%° 4 pseudo-random function
Fx : {0,1}"1 — {0,1}* = signature ¥
@’ Idea: Use to Derandomise OTS signature and key gen.

Pho S

M, 0 Phy Sho
L%
Yo 0aF () <+ KUEN'CR)

20/28

(Many-Time) Signatures

» Short stateful signature ¥%° 4 pseudo-random function

Fx : {0, 1}e+1 — {0,1}* = signature ¥

@’ Idea: Use to Derandomise OTS signature and key gen.

Py\\,%\ Pho‘,%ﬂ
. L
C Foeiolt (o)<t KENU)

20/28

(Many-Time) Signatures

» Short stateful signature ¥%° 4 pseudo-random function
Fx : {0,1}"1 — {0,1}* = signature ¥
@’ Idea: Use to Derandomise OTS signature and key gen.

Py\\,%\ Pho‘,%ﬂ
- Phg ot S
<t :
S Voe{oul s () o= BUENTA F0)

<

LY 0eDul s TSI Pl Fr(0))

20/28

(Many-Time) Signatures

» Short stateful signature ¥%° 4 pseudo-random function
Fx : {0,1}"1 — {0,1}* = signature ¥
*’g/’ Idea: Use to Derandomise OTS signature and key gen.

P S

Phe L
V\aeim} (vm,ém)” KUENCA E40)

vmo 1 g emsin, Fhh Fo)

Exercise 4 (EU-CMA signature)

Prove that ¥ is secure.

19/26

Plan for this Session

Efficient Signatures via Hash-and-Sign

21/28

Efficient Signatures via Hash-then-Invert

» Efficient schemes under stronger hardness assumptions

22/28

Efficient Signatures via Hash-then-Invert

» Efficient schemes under stronger hardness assumptions
» Trapdoor (one-way) permutation F, F~1:D — D

22/28

Efficient Signatures via Hash-then-Invert

» Efficient schemes under stronger hardness assumptions
» Trapdoor (one-way) permutation F, F~1:D — D
» Syntax:

22/28

Efficient Signatures via Hash-then-Invert

» Efficient schemes under stronger hardness assumptions
» Trapdoor (one-way) permutation F, F~1:D — D
» Syntax:

CRE SR

22/28

Efficient Signatures via Hash-then-Invert

» Efficient schemes under stronger hardness assumptions
» Trapdoor (one-way) permutation F, F~1:D — D
> Syntax:

CRE SR

22/28

Efficient Signatures via Hash-then-Invert

» Efficient schemes under stronger hardness assumptions
» Trapdoor (one-way) permutation F, F~1:D — D
> Syntax:

CRE SR

22/28

Efficient Signatures via Hash-then-Invert

» Efficient schemes under stronger hardness assumptions
» Trapdoor (one-way) permutation F, F~1:D — D
> Syntax:

CRE SR
. qu

22/28

Efficient Signatures via Hash-then-Invert

» Efficient schemes under stronger hardness assumptions
» Trapdoor (one-way) permutation F, F~1:D — D
» Syntax:

CRF SR :
. F‘@

» Security: one-way without the knowledge of the trapdoor
» Instantiations of TDP
> RSA perm.: F(x) :=x®mod N and F~}(y) := y¢ mod N,
where ed = 1 mod ¢(N)
» From indistinguishability obfuscation and OWF

22/27

Efficient Signatures via Hash-then-Invert

» TDP (F,F~!) over domain D + hash function
H:{0,1}* — D = signature ¥ for M := {0,1}"

23/28

Efficient Signatures via Hash-then-Invert

» TDP (F,F~!) over domain D + hash function
H:{0,1}* — D = signature ¥ for M := {0,1}"

HIENC)

23/28

Efficient Signatures via Hash-then-Invert

» TDP (F,F~!) over domain D + hash function
H:{0,1}* — D = signature ¥ for M := {0,1}"

SR] 7

23/28

Efficient Signatures via Hash-then-Invert

» TDP (F,F~!) over domain D + hash function
H:{0,1}* — D = signature ¥ for M := {0,1}"

S 7
HE R &

23/28

Efficient Signatures via Hash-then-Invert

» TDP (F,F~!) over domain D + hash function
H:{0,1}* — D = signature ¥ for M := {0,1}"

SR] 7

- h Hd g &

23/28

Efficient Signatures via Hash-then-Invert

» TDP (F,F~!) over domain D + hash function
H:{0,1}* — D = signature ¥ for M := {0,1}"

S)
ch HE R &

23/28

Efficient Signatures via Hash-then-Invert

» TDP (F,F~!) over domain D + hash function
H:{0,1}* — D = signature ¥ for M := {0,1}"

P <IN

S 7 ;:
¢h Hd & :

23/28

Efficient Signatures via Hash-then-Invert

» TDP (F,F~!) over domain D + hash function
H:{0,1}* — D = signature ¥ for M := {0,1}"

~th Hf &

_ cr= FHED) =SIGN (CFM)

A4 " ::
RET SRS oy o bR

23/28

Efficient Signatures via Hash-then-Invert

» TDP (F,F~!) over domain D + hash function
H:{0,1}* — D = signature ¥ for M := {0,1}"

- T= (H())fZSICN(M)
T /R () <

VEH'P’(PF)/M,U) ‘ / H & R &

KGENCIY)

23/28

Efficient Signatures via Hash-then-Invert

» TDP (F,F~!) over domain D + hash function
H:{0,1}* — D = signature ¥ for M := {0,1}"

(H00) = SIGN (kM)

/
/

/

/RSP
HeE R &

— VEHIFY(PHMG)\"‘-; / KUENCIY)

NPT (6) (M) /

23/28

Efficient Signatures via Hash-then-Invert

» TDP (F,F~!) over domain D + hash function
H:{0,1}* — D = signature ¥ for M := {0,1}"

(H00) = SIGN (kM)

/
/

/

Y orTuR(P)
HeE R &

SOV /
':_Aum IFF F (¢) =H (M)

ALICE

» Efficient: compact public key and short signatures

22/26

Efficient Signatures via Hash-then-Invert...

If (F,F~1) is a TDP and H is a random oracle then ¥ is secure.

24/28

Efficient Signatures via Hash-then-Invert...

Theorem 7
If (F,F~1) is a TDP and H is a random oracle then ¥ is secure.

Proof sketch: random oracle programming.

RANDOM ORACLE H

ADVERSARY REDUCTION

24/28

Efficient Signatures via Hash-then-Invert...

Theorem 7
If (F,F~1) is a TDP and H is a random oracle then ¥ is secure.

Proof sketch: random oracle programming.

RANDOM ORACLE H

i//vi% ® H@\x

ADVERSARY REDUCTION

24/28

Efficient Signatures via Hash-then-Invert...

Theorem 7
If (F,F~1) is a TDP and H is a random oracle then ¥ is secure.

Proof sketch: random oracle programming.

RANDOM ORACLE H

14/%4 ®) H (1)%

ADVERSARY REDUCTION

24/28

Efficient Signatures via Hash-then-Invert...

If (F,F~1) is a TDP and H is a random oracle then ¥ is secure.

Proof sketch: random oracle programming.

24/28

Efficient Signatures via Hash-then-Invert...

If (F,F~1) is a TDP and H is a random oracle then ¥ is secure.

Proof sketch: random oracle programming.

24/28

Efficient Signatures via Hash-then-Invert...

Theorem 7
If (F,F~1) is a TDP and H is a random oracle then ¥ is secure.

Proof sketch: random oracle programming.

24/28

Efficient Signatures via Hash-then-Invert...

Theorem 7
If (F,F~1) is a TDP and H is a random oracle then ¥ is secure.

Proof sketch: random oracle programming.

aMEadd
DEFINE H():=F(7)

P =SIN ,M)ff;%%/

24/28

Efficient Signatures via Hash-then-Invert...

Theorem 7
If (F,F~1) is a TDP and H is a random oracle then ¥ is secure.

Proof sketch: random oracle programming.

aMEadd
DEFINE H():=F(7)

24/28

Efficient Signatures via Hash-then-Invert...

Theorem 7
If (F,F~1) is a TDP and H is a random oracle then ¥ is secure.

Proof sketch: random oracle programming.

aMEadd
DEFINE H():=F(7)

24/28

Efficient Signatures via Hash-then-Invert...

Theorem 7
If (F,F~1) is a TDP and H is a random oracle then ¥ is secure.

Proof sketch: random oracle programming.

aMEadd
DEFINE H():=F(7)

24/28

Efficient Signatures via Hash-then-Invert...

Theorem 7
If (F,F~1) is a TDP and H is a random oracle then ¥ is secure.

Proof sketch: random oracle programming.

DEFINE H():=F(q) o

24/28

Efficient Signatures via Hash-then-Invert...

Theorem 7
If (F,F~1) is a TDP and H is a random oracle then ¥ is secure.

Proof sketch: random oracle programming.

7 ' %Mme«iﬁ o
@ DEFINE H():=F(q) o

24/28

Efficient Signatures via Hash-then-Invert...

Theorem 7
If (F,F~1) is a TDP and H is a random oracle then ¥ is secure.

Proof sketch: random oracle programming.

@ s z
DEFINE ()s=F(c) :
e ‘ H@)= F 00 =SION (s, M) O] : §

X e O=F @)= FHD = URoh VS E
n - (:jé&ﬁ '''' - ‘ §

R @ M §

M ¢

24/28

Efficient Signatures via Hash-then-Invert...

Theorem 7
If (F,F~1) is a TDP and H is a random oracle then ¥ is secure.

Proof sketch: random oracle programming.

aMEadd
DEFINE H(D:=F(o)
DEFINED H(M):= 4"

M Wy
o M ¢

24/28

Efficient Signatures via Hash-then-Invert...

Theorem 7
If (F,F~1) is a TDP and H is a random oracle then ¥ is secure.

Proof sketch: random oracle programming.

amecds :
@ DEANE HODs=Fl0)
DEFINED. H(M)== 7 BY COESSNG THS GORAYL

H .
g=F {(a))=FHED=SINEY) O8] -

24/28

Efficient Signatures via Hash-then-Invert...

Theorem 7

If (F,F~1) is a TDP and H is a random oracle then ¥ is secure.

Proof sketch: random oracle programming.

amecds :
@ DEANE HODs=Fl0)
DEFINED. H(M)== 7 BY COESSNG THS GORAYL

H .
g=F {(a))=FHED=SINEY) O8] -

23 L= E)
=F(¥) :
M S :
M ¢ Fy

24/28

Efficient Signatures via Hash-then-Invert...

Theorem 7

If (F,F~1) is a TDP and H is a random oracle then ¥ is secure.

Proof sketch: random oracle programming.

ameods
@ DEANE HODs=Fl0)
DEFINED. H(M)== 7 BY COESSNG THS GORAYL

H .
g=F (@)= F N =SINE) 08

S
MGH) o 5 =FUE) -
w Y AR
i Ry

24/28

Plan for this Session

Wrapping Up

25 /28

To Recap

» Constructions:
1. Theoretical construction of signature using OWF and CRHF

» CRHF can be replaced with universal one-way hash function
(UOWHF), which can be constructed from OWF
» Can be shown to be quantum secure

26/28

To Recap

» Constructions:
1. Theoretical construction of signature using OWF and CRHF

» CRHF can be replaced with universal one-way hash function
(UOWHF), which can be constructed from OWF
» Can be shown to be quantum secure

2. Efficient constructions in ROM

» RSA-PSS based on Hash-then-Invert
» Other approach: Fiat-Shamir Transform (e.g., Schnorr)

26/28

To Recap

» Constructions:
1. Theoretical construction of signature using OWF and CRHF

» CRHF can be replaced with universal one-way hash function
(UOWHF), which can be constructed from OWF
» Can be shown to be quantum secure

2. Efficient constructions in ROM

» RSA-PSS based on Hash-then-Invert
» Other approach: Fiat-Shamir Transform (e.g., Schnorr)

> Takeaways:

26/28

To Recap

» Constructions:
1. Theoretical construction of signature using OWF and CRHF

» CRHF can be replaced with universal one-way hash function
(UOWHF), which can be constructed from OWF
» Can be shown to be quantum secure

2. Efficient constructions in ROM

» RSA-PSS based on Hash-then-Invert
» Other approach: Fiat-Shamir Transform (e.g., Schnorr)

ol

Pho Cho Ph
(@)

Ph Pha,

g

> Takeaways:
» Constructive: Ph Phe

» Bottom up constructive approach

. i h
> Tree-based construction (divide and conquer) Phe

9

26/28

To Recap

» Constructions:
1. Theoretical construction of signature using OWF and CRHF

» CRHF can be replaced with universal one-way hash function
(UOWHF), which can be constructed from OWF
» Can be shown to be quantum secure

2. Efficient constructions in ROM

» RSA-PSS based on Hash-then-Invert
» Other approach: Fiat-Shamir Transform (e.g., Schnorr)

Pl Gl Ph,
o o

1

> Takeaways:
» Constructive: Phy, Phy,

» Bottom up constructive approach
> Tree-based construction (divide and conquer)

» Proof techniques:
> “Plug and pray”
» Random oracle programming '

26/28

Thank You for Your Attention! More Questions?

27 /28

References

. Digital signature and its security models were formally studied
in [GMR88]

2. Lamport’s OTS is from [Lam79]

3. The stateful many-time signature is from [KL21], and is a in

spirit with Merkle's signatures [Mer90]

. The “hash-then-invert” paradigm in random-oracle model was
studied in [BR93]

28/28

Mihir Bellare and Phillip Rogaway.
Random oracles are practical: A paradigm for designing efficient protocols.

In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu,
and Victoria Ashby, editors, ACM CCS 93, pages 62-73. ACM Press,
November 1993.

Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest.

A digital signature scheme secure against adaptive chosen-message
attacks.

SIAM J. Comput., 17(2):281-308, 1988.

Jonathan Katz and Yehuda Lindell.
Introduction to Modern Cryptography, Third Edition.
CRC Press, 2021.

Leslie Lamport.
Constructing digital signatures from a one-way function.
Technical report, 1979.

Ralph C. Merkle.
A certified digital signature.
In Gilles Brassard, editor, CRYPTO'89, volume 435 of LNCS, pages

218-238. Springer, Heidelberg, August 1990.
28/28

	Digital Signature: Syntax and Modelling Security
	One-Time Signatures
	Many-Time (Stateful) Signatures
	Efficient Signatures via Hash-and-Sign
	Wrapping Up

