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One-Time Signatures: Lamport’s Signature...

Exercise 1

» Can a forger break EU-CMA given two signatures?
» What happens if we fix i* = Q in the proof?
» Are the signatures unique? If not, can it be made unique?

Theorem 5

If f is a OWF then Lamport’s scheme is a one-time signature for
fixed-length messages.

Exercise 2 (Domain Extension)

Given a collision-resistant hash function H : {0,1}* — {0,1}*,
construct a OTS for arbitrary-length messages.
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(Many-Time) Stateful Signatures...

@ The size of signatures in X° grows linearly with the number of
signatures issued by the signer. How to fix this?

ol .
Q ldea: “tree of signatures”
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Exercise 3 (Shorter stateful signature)

Prove that the construction ¥ is secure. (Hint: plug and pray.)
%
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(Many-Time) Signatures

» Short stateful signature ¥%° 4 pseudo-random function
Fx : {0,1}"1 — {0,1}* = signature ¥
*’g/’ Idea: Use to Derandomise OTS signature and key gen.
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Exercise 4 (EU-CMA signature)

Prove that ¥ is secure.
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Efficient Signatures via Hash-and-Sign
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Efficient Signatures via Hash-then-Invert

» Efficient schemes under stronger hardness assumptions
» Trapdoor (one-way) permutation F, F~1:D — D
» Syntax:

CRF SR :
. F‘@

» Security: one-way without the knowledge of the trapdoor
» Instantiations of TDP
> RSA perm.: F(x) :=x®mod N and F~}(y) := y¢ mod N,
where ed = 1 mod ¢(N)
» From indistinguishability obfuscation and OWF
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Efficient Signatures via Hash-then-Invert

» TDP (F,F~!) over domain D + hash function
H:{0,1}* — D = signature ¥ for M := {0,1}"
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Efficient Signatures via Hash-then-Invert

» TDP (F,F~!) over domain D + hash function
H:{0,1}* — D = signature ¥ for M := {0,1}"
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Efficient Signatures via Hash-then-Invert

» TDP (F,F~!) over domain D + hash function
H:{0,1}* — D = signature ¥ for M := {0,1}"

(H00) = SIGN (kM)

/
/

/

/RSP
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— VEHIFY(PHMG)\"‘-; / KUENCIY)
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Efficient Signatures via Hash-then-Invert

» TDP (F,F~!) over domain D + hash function
H:{0,1}* — D = signature ¥ for M := {0,1}"

(H00) = SIGN (kM)

/
/

/

Y orTuR(P )
HeE R &

SOV /
':_Aum IFF F (¢) =H (M)

ALICE

» Efficient: compact public key and short signatures
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Theorem 7
If (F,F~1) is a TDP and H is a random oracle then ¥ is secure.

Proof sketch: random oracle programming.
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Theorem 7
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Theorem 7
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» Can be shown to be quantum secure

2. Efficient constructions in ROM

» RSA-PSS based on Hash-then-Invert
» Other approach: Fiat-Shamir Transform (e.g., Schnorr)
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> Takeaways:
» Constructive: Phy, Phy,

» Bottom up constructive approach
> Tree-based construction (divide and conquer)

» Proof techniques:
> “Plug and pray”
» Random oracle programming '
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Thank You for Your Attention! More Questions?
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