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One-Time Signatures: Lamport’s Signature...

Exercise 1

▶ Can a forger break EU-CMA given two signatures?

▶ What happens if we fix i∗ = 0 in the proof?

▶ Are the signatures unique? If not, can it be made unique?

Theorem 5

If f is a OWF then Lamport’s scheme is a one-time signature for
fixed-length messages.

Exercise 2 (Domain Extension)

Given a collision-resistant hash function H : {0, 1}2ℓ → {0, 1}ℓ,
construct a OTS for arbitrary-length messages.
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To Recap

▶ Constructions:
1. Theoretical construction of signature using OWF and CRHF

▶ CRHF can be replaced with universal one-way hash function
(UOWHF), which can be constructed from OWF

▶ Can be shown to be quantum secure
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Thank You for Your Attention! More Questions?
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