
Digital Signatures

Chethan Kamath

ACM Summer School 2024, 6/Jun/2024
1 / 28



Recall from Prior Sessions

2 / 28



Recall from Prior Sessions

2 / 28



Recall from Prior Sessions

2 / 28



Plan for this Session

Digital Signature: Syntax and Modelling Security

3 / 28



Plan for this Session

Digital Signature: Syntax and Modelling Security

One-Time Signatures

3 / 28



Plan for this Session

Digital Signature: Syntax and Modelling Security

One-Time Signatures

Many-Time (Stateful) Signatures

3 / 28



Plan for this Session

Digital Signature: Syntax and Modelling Security

One-Time Signatures

Many-Time (Stateful) Signatures

Efficient Signatures via Hash-and-Sign

3 / 28



Plan for this Session

Digital Signature: Syntax and Modelling Security

One-Time Signatures

Many-Time (Stateful) Signatures

Efficient Signatures via Hash-and-Sign

Wrapping Up

3 / 28



Plan for this Session

Digital Signature: Syntax and Modelling Security

One-Time Signatures

Many-Time (Stateful) Signatures

Efficient Signatures via Hash-and-Sign

Wrapping Up

4 / 28



Digital (Analogues of Physical) Signatures...

▶ Requirement: no one should be able to forge Bob’s signature

5 / 28



Digital (Analogues of Physical) Signatures...

▶ Requirement: no one should be able to forge Bob’s signature

5 / 28



Digital (Analogues of Physical) Signatures...

▶ Requirement: no one should be able to forge Bob’s signature

5 / 28



Digital (Analogues of Physical) Signatures...

▶ Requirement: no one should be able to forge Bob’s signature

5 / 28



Digital (Analogues of Physical) Signatures...

▶ Requirement: no one should be able to forge Bob’s signature

5 / 28



Digital (Analogues of Physical) Signatures...

▶ Requirement: no one should be able to forge Bob’s signature

5 / 28



Digital (Analogues of Physical) Signatures...

▶ Requirement: no one should be able to forge Bob’s signature

5 / 28



Digital (Analogues of Physical) Signatures...

▶ Requirement: no one should be able to forge Bob’s signature

5 / 28



Digital (Analogues of Physical) Signatures...

6 / 28



Digital (Analogues of Physical) Signatures...

6 / 28



Digital (Analogues of Physical) Signatures...

6 / 28



Syntax

▶ Public-key analogue of message authentication codes (MAC)
▶ Triple of algorithms: (KGEN, SIGN, VERIFY)

7 / 28



Syntax

▶ Public-key analogue of message authentication codes (MAC)
▶ Triple of algorithms: (KGEN, SIGN, VERIFY)

7 / 28



Syntax

▶ Public-key analogue of message authentication codes (MAC)
▶ Triple of algorithms: (KGEN, SIGN, VERIFY)

7 / 28



Syntax

▶ Public-key analogue of message authentication codes (MAC)
▶ Triple of algorithms: (KGEN, SIGN, VERIFY)

7 / 28



Syntax

▶ Public-key analogue of message authentication codes (MAC)
▶ Triple of algorithms: (KGEN, SIGN, VERIFY)

7 / 28



Syntax

▶ Public-key analogue of message authentication codes (MAC)
▶ Triple of algorithms: (KGEN, SIGN, VERIFY)

7 / 28



Syntax

▶ Public-key analogue of message authentication codes (MAC)
▶ Triple of algorithms: (KGEN, SIGN, VERIFY)

7 / 28



Security: Universal Unforgeability under Key-Only Attack

Definition 1

A scheme is UU-KOA secure if no PPT forger can break as above
with a non-negligible probability.

8 / 28



Security: Universal Unforgeability under Key-Only Attack

Definition 1

A scheme is UU-KOA secure if no PPT forger can break as above
with a non-negligible probability.

8 / 28



Security: Universal Unforgeability under Key-Only Attack

Definition 1

A scheme is UU-KOA secure if no PPT forger can break as above
with a non-negligible probability.

8 / 28



Security: Universal Unforgeability under Key-Only Attack

Definition 1

A scheme is UU-KOA secure if no PPT forger can break as above
with a non-negligible probability.

8 / 28



Security: Universal Unforgeability under Key-Only Attack

Definition 1

A scheme is UU-KOA secure if no PPT forger can break as above
with a non-negligible probability.

8 / 28



Security: Universal Unforgeability under Key-Only Attack

Definition 1

A scheme is UU-KOA secure if no PPT forger can break as above
with a non-negligible probability.

8 / 28



Security: Universal Unforgeability under Key-Only Attack

Definition 1

A scheme is UU-KOA secure if no PPT forger can break as above
with a non-negligible probability.

8 / 28



Security: Universal Unforgeability under Key-Only Attack

Definition 1

A scheme is UU-KOA secure if no PPT forger can break as above
with a non-negligible probability.

8 / 28



Security: Universal Unforgeability under Key-Only Attack

Definition 1

A scheme is UU-KOA secure if no PPT forger can break as above
with a non-negligible probability.

8 / 28



Security: Existential Unforg. under Key-Only Attack

Definition 2

A scheme is EU-KOA secure if no PPT forger can break as above
with a non-negligible probability.

9 / 28



Security: Existential Unforg. under Key-Only Attack

Definition 2

A scheme is EU-KOA secure if no PPT forger can break as above
with a non-negligible probability.

9 / 28



Security: Existential Unforg. under Key-Only Attack

Definition 2

A scheme is EU-KOA secure if no PPT forger can break as above
with a non-negligible probability.

9 / 28



Security: Existential Unforg. under Key-Only Attack

Definition 2

A scheme is EU-KOA secure if no PPT forger can break as above
with a non-negligible probability.

9 / 28



Security: Existential Unforg. under Key-Only Attack

Definition 2

A scheme is EU-KOA secure if no PPT forger can break as above
with a non-negligible probability.

9 / 28



Security: Existential Unforg. under Key-Only Attack

Definition 2

A scheme is EU-KOA secure if no PPT forger can break as above
with a non-negligible probability.

9 / 28



Security: Existential Unforg. under Chosen-Message Attack

Definition 3

A scheme is EU-CMA secure if no PPT forger can break as above
with a non-negligible probability.

10 / 28



Security: Existential Unforg. under Chosen-Message Attack

Definition 3

A scheme is EU-CMA secure if no PPT forger can break as above
with a non-negligible probability.

10 / 28



Security: Existential Unforg. under Chosen-Message Attack

Definition 3

A scheme is EU-CMA secure if no PPT forger can break as above
with a non-negligible probability.

10 / 28



Security: Existential Unforg. under Chosen-Message Attack

Definition 3

A scheme is EU-CMA secure if no PPT forger can break as above
with a non-negligible probability.

10 / 28



Security: Existential Unforg. under Chosen-Message Attack

Definition 3

A scheme is EU-CMA secure if no PPT forger can break as above
with a non-negligible probability.

10 / 28



Security: Existential Unforg. under Chosen-Message Attack

Definition 3

A scheme is EU-CMA secure if no PPT forger can break as above
with a non-negligible probability.

10 / 28



Security: Existential Unforg. under Chosen-Message Attack

Definition 3

A scheme is EU-CMA secure if no PPT forger can break as above
with a non-negligible probability.

10 / 28



Plan for this Session

Digital Signature: Syntax and Modelling Security

One-Time Signatures

Many-Time (Stateful) Signatures

Efficient Signatures via Hash-and-Sign

Wrapping Up

11 / 28



One-Time Signatures (q = 1): Lamport’s Signature...

▶ One-way func. f : {0, 1}λ → {0, 1}λ ⇒ OTS for M := {0, 1}ℓ

12 / 28



One-Time Signatures (q = 1): Lamport’s Signature...

▶ One-way func. f : {0, 1}λ → {0, 1}λ ⇒ OTS for M := {0, 1}ℓ

12 / 28



One-Time Signatures (q = 1): Lamport’s Signature...

▶ One-way func. f : {0, 1}λ → {0, 1}λ ⇒ OTS for M := {0, 1}ℓ

12 / 28



One-Time Signatures (q = 1): Lamport’s Signature...

▶ One-way func. f : {0, 1}λ → {0, 1}λ ⇒ OTS for M := {0, 1}ℓ

12 / 28



One-Time Signatures (q = 1): Lamport’s Signature...

▶ One-way func. f : {0, 1}λ → {0, 1}λ ⇒ OTS for M := {0, 1}ℓ

12 / 28



One-Time Signatures (q = 1): Lamport’s Signature...

▶ One-way func. f : {0, 1}λ → {0, 1}λ ⇒ OTS for M := {0, 1}ℓ

12 / 28



One-Time Signatures (q = 1): Lamport’s Signature...

▶ One-way func. f : {0, 1}λ → {0, 1}λ ⇒ OTS for M := {0, 1}ℓ

12 / 28



One-Time Signatures (q = 1): Lamport’s Signature...

▶ One-way func. f : {0, 1}λ → {0, 1}λ ⇒ OTS for M := {0, 1}ℓ

12 / 28



One-Time Signatures (q = 1): Lamport’s Signature...

▶ One-way func. f : {0, 1}λ → {0, 1}λ ⇒ OTS for M := {0, 1}ℓ

12 / 28



One-Time Signatures (q = 1): Lamport’s Signature...

▶ One-way func. f : {0, 1}λ → {0, 1}λ ⇒ OTS for M := {0, 1}ℓ

12 / 28



One-Time Signatures (q = 1): Lamport’s Signature...

▶ One-way func. f : {0, 1}λ → {0, 1}λ ⇒ OTS for M := {0, 1}ℓ

12 / 28



One-Time Signatures (q = 1): Lamport’s Signature...

Theorem 4

If f is a OWF then Lamport’s scheme is a one-time signature.

13 / 28



One-Time Signatures (q = 1): Lamport’s Signature...

Theorem 4

If f is a OWF then Lamport’s scheme is a one-time signature.

Proof sketch: proof by reduction. Idea: “plug and pray”.

13 / 28



One-Time Signatures (q = 1): Lamport’s Signature...

Theorem 4

If f is a OWF then Lamport’s scheme is a one-time signature.

Proof sketch: proof by reduction. Idea: “plug and pray”.

13 / 28



One-Time Signatures (q = 1): Lamport’s Signature...

Theorem 4

If f is a OWF then Lamport’s scheme is a one-time signature.

Proof sketch: proof by reduction. Idea: “plug and pray”.

13 / 28



One-Time Signatures (q = 1): Lamport’s Signature...

Theorem 4

If f is a OWF then Lamport’s scheme is a one-time signature.

Proof sketch: proof by reduction. Idea: “plug and pray”.

13 / 28



One-Time Signatures (q = 1): Lamport’s Signature...

Theorem 4

If f is a OWF then Lamport’s scheme is a one-time signature.

Proof sketch: proof by reduction. Idea: “plug and pray”.

13 / 28



One-Time Signatures (q = 1): Lamport’s Signature...

Theorem 4

If f is a OWF then Lamport’s scheme is a one-time signature.

Proof sketch: proof by reduction. Idea: “plug and pray”.

13 / 28



One-Time Signatures (q = 1): Lamport’s Signature...

Theorem 4

If f is a OWF then Lamport’s scheme is a one-time signature.

Proof sketch: proof by reduction. Idea: “plug and pray”.

13 / 28



One-Time Signatures (q = 1): Lamport’s Signature...

Theorem 4

If f is a OWF then Lamport’s scheme is a one-time signature.

Proof sketch: proof by reduction. Idea: “plug and pray”.

13 / 28



One-Time Signatures (q = 1): Lamport’s Signature...

Theorem 4

If f is a OWF then Lamport’s scheme is a one-time signature.

Proof sketch: proof by reduction. Idea: “plug and pray”.

13 / 28



One-Time Signatures (q = 1): Lamport’s Signature...

Theorem 4

If f is a OWF then Lamport’s scheme is a one-time signature.

Proof sketch: proof by reduction. Idea: “plug and pray”.

13 / 28



One-Time Signatures (q = 1): Lamport’s Signature...

Theorem 4

If f is a OWF then Lamport’s scheme is a one-time signature.

Proof sketch: proof by reduction. Idea: “plug and pray”.

13 / 28



One-Time Signatures (q = 1): Lamport’s Signature...

Theorem 4

If f is a OWF then Lamport’s scheme is a one-time signature.

Proof sketch: proof by reduction. Idea: “plug and pray”.

13 / 28



One-Time Signatures (q = 1): Lamport’s Signature...

Theorem 4

If f is a OWF then Lamport’s scheme is a one-time signature.

Proof sketch: proof by reduction. Idea: “plug and pray”.

13 / 28



One-Time Signatures (q = 1): Lamport’s Signature...

Theorem 4

If f is a OWF then Lamport’s scheme is a one-time signature.

Proof sketch: proof by reduction. Idea: “plug and pray”.

13 / 28



One-Time Signatures (q = 1): Lamport’s Signature...

Theorem 4

If f is a OWF then Lamport’s scheme is a one-time signature.

Proof sketch: proof by reduction. Idea: “plug and pray”.

13 / 28



One-Time Signatures (q = 1): Lamport’s Signature...

Theorem 4

If f is a OWF then Lamport’s scheme is a one-time signature.

Proof sketch: proof by reduction. Idea: “plug and pray”.

13 / 28



One-Time Signatures: Lamport’s Signature...

Exercise 1

▶ Can a forger break EU-CMA given two signatures?

▶ What happens if we fix i∗ = 0 in the proof?

▶ Are the signatures unique? If not, can it be made unique?

14 / 28



One-Time Signatures: Lamport’s Signature...

Exercise 1

▶ Can a forger break EU-CMA given two signatures?

▶ What happens if we fix i∗ = 0 in the proof?

▶ Are the signatures unique? If not, can it be made unique?

Theorem 5

If f is a OWF then Lamport’s scheme is a one-time signature

14 / 28



One-Time Signatures: Lamport’s Signature...

Exercise 1

▶ Can a forger break EU-CMA given two signatures?

▶ What happens if we fix i∗ = 0 in the proof?

▶ Are the signatures unique? If not, can it be made unique?

Theorem 5

If f is a OWF then Lamport’s scheme is a one-time signature for
fixed-length messages.

Exercise 2 (Domain Extension)

Given a collision-resistant hash function H : {0, 1}2ℓ → {0, 1}ℓ,
construct a OTS for arbitrary-length messages.

14 / 28



Plan for this Session

Digital Signature: Syntax and Modelling Security

One-Time Signatures

Many-Time (Stateful) Signatures

Efficient Signatures via Hash-and-Sign

Wrapping Up

15 / 28



(Many-Time) Signatures with Stateful Signer

▶ Syntax: same as before except that SIGN is stateful

▶ Security: same as before (i.e., forger not given any state)

16 / 28



(Many-Time) Signatures with Stateful Signer

▶ Syntax: same as before except that SIGN is stateful

▶ Security: same as before (i.e., forger not given any state)

16 / 28



(Many-Time) Signatures with Stateful Signer

▶ Syntax: same as before except that SIGN is stateful

▶ Security: same as before (i.e., forger not given any state)

16 / 28



(Many-Time) Signatures with Stateful Signer

▶ Syntax: same as before except that SIGN is stateful

▶ Security: same as before (i.e., forger not given any state)

16 / 28



(Many-Time) Signatures with Stateful Signer

▶ Syntax: same as before except that SIGN is stateful

▶ Security: same as before (i.e., forger not given any state)

16 / 28



(Many-Time) Stateful Signatures...

▶ OTS Σ1 = (KGEN1, SIGN1, VERIFY1) ⇒ stateful signature Σs .

17 / 28



(Many-Time) Stateful Signatures...

▶ OTS Σ1 = (KGEN1, SIGN1, VERIFY1) ⇒ stateful signature Σs .

Idea: “chain signatures”

17 / 28



(Many-Time) Stateful Signatures...

▶ OTS Σ1 = (KGEN1, SIGN1, VERIFY1) ⇒ stateful signature Σs .

Idea: “chain signatures”

17 / 28



(Many-Time) Stateful Signatures...

▶ OTS Σ1 = (KGEN1, SIGN1, VERIFY1) ⇒ stateful signature Σs .

Idea: “chain signatures”

17 / 28



(Many-Time) Stateful Signatures...

▶ OTS Σ1 = (KGEN1, SIGN1, VERIFY1) ⇒ stateful signature Σs .

Idea: “chain signatures”

17 / 28



(Many-Time) Stateful Signatures...

▶ OTS Σ1 = (KGEN1, SIGN1, VERIFY1) ⇒ stateful signature Σs .

Idea: “chain signatures”

17 / 28



(Many-Time) Stateful Signatures...

▶ OTS Σ1 = (KGEN1, SIGN1, VERIFY1) ⇒ stateful signature Σs .

Idea: “chain signatures”

17 / 28



(Many-Time) Stateful Signatures...

▶ OTS Σ1 = (KGEN1, SIGN1, VERIFY1) ⇒ stateful signature Σs .

Idea: “chain signatures”

17 / 28



(Many-Time) Stateful Signatures...

▶ OTS Σ1 = (KGEN1, SIGN1, VERIFY1) ⇒ stateful signature Σs .

Idea: “chain signatures”

17 / 28



(Many-Time) Stateful Signatures...

▶ OTS Σ1 = (KGEN1, SIGN1, VERIFY1) ⇒ stateful signature Σs .

Idea: “chain signatures”

17 / 28



(Many-Time) Stateful Signatures...

▶ OTS Σ1 = (KGEN1, SIGN1, VERIFY1) ⇒ stateful signature Σs .

Idea: “chain signatures”

17 / 28



(Many-Time) Stateful Signatures...

▶ OTS Σ1 = (KGEN1, SIGN1, VERIFY1) ⇒ stateful signature Σs .

Idea: “chain signatures”

17 / 28



(Many-Time) Stateful Signatures...

▶ OTS Σ1 = (KGEN1, SIGN1, VERIFY1) ⇒ stateful signature Σs .

Idea: “chain signatures”

17 / 28



(Many-Time) Stateful Signatures...

▶ OTS Σ1 = (KGEN1, SIGN1, VERIFY1) ⇒ stateful signature Σs .

Idea: “chain signatures”

17 / 28



(Many-Time) Stateful Signatures...

▶ OTS Σ1 = (KGEN1, SIGN1, VERIFY1) ⇒ stateful signature Σs .

Idea: “chain signatures”

17 / 28



(Many-Time) Stateful Signatures...

▶ OTS Σ1 = (KGEN1, SIGN1, VERIFY1) ⇒ stateful signature Σs .

Idea: “chain signatures”

17 / 28



(Many-Time) Stateful Signatures...

Theorem 6

If Σ1 is an OTS supporting arbitrary-length messages then Σs is a
stateful signature.

18 / 28



(Many-Time) Stateful Signatures...

Theorem 6

If Σ1 is an OTS supporting arbitrary-length messages then Σs is a
stateful signature.

Proof sketch: plug and pray, again.

18 / 28



(Many-Time) Stateful Signatures...

Theorem 6

If Σ1 is an OTS supporting arbitrary-length messages then Σs is a
stateful signature.

Proof sketch: plug and pray, again.

18 / 28



(Many-Time) Stateful Signatures...

Theorem 6

If Σ1 is an OTS supporting arbitrary-length messages then Σs is a
stateful signature.

Proof sketch: plug and pray, again.

18 / 28



(Many-Time) Stateful Signatures...

Theorem 6

If Σ1 is an OTS supporting arbitrary-length messages then Σs is a
stateful signature.

Proof sketch: plug and pray, again.

18 / 28



(Many-Time) Stateful Signatures...

Theorem 6

If Σ1 is an OTS supporting arbitrary-length messages then Σs is a
stateful signature.

Proof sketch: plug and pray, again.

18 / 28



(Many-Time) Stateful Signatures...

Theorem 6

If Σ1 is an OTS supporting arbitrary-length messages then Σs is a
stateful signature.

Proof sketch: plug and pray, again.

18 / 28



(Many-Time) Stateful Signatures...

Theorem 6

If Σ1 is an OTS supporting arbitrary-length messages then Σs is a
stateful signature.

Proof sketch: plug and pray, again.

18 / 28



(Many-Time) Stateful Signatures...

Theorem 6

If Σ1 is an OTS supporting arbitrary-length messages then Σs is a
stateful signature.

Proof sketch: plug and pray, again.

18 / 28



(Many-Time) Stateful Signatures...

Theorem 6

If Σ1 is an OTS supporting arbitrary-length messages then Σs is a
stateful signature.

Proof sketch: plug and pray, again.

18 / 28



(Many-Time) Stateful Signatures...

Theorem 6

If Σ1 is an OTS supporting arbitrary-length messages then Σs is a
stateful signature.

Proof sketch: plug and pray, again.

18 / 28



(Many-Time) Stateful Signatures...

Theorem 6

If Σ1 is an OTS supporting arbitrary-length messages then Σs is a
stateful signature.

Proof sketch: plug and pray, again.

18 / 28



(Many-Time) Stateful Signatures...

Theorem 6

If Σ1 is an OTS supporting arbitrary-length messages then Σs is a
stateful signature.

Proof sketch: plug and pray, again.

18 / 28



(Many-Time) Stateful Signatures...

Theorem 6

If Σ1 is an OTS supporting arbitrary-length messages then Σs is a
stateful signature.

Proof sketch: plug and pray, again.

18 / 28



(Many-Time) Stateful Signatures...

Theorem 6

If Σ1 is an OTS supporting arbitrary-length messages then Σs is a
stateful signature.

Proof sketch: plug and pray, again.

18 / 28



(Many-Time) Stateful Signatures...

Theorem 6

If Σ1 is an OTS supporting arbitrary-length messages then Σs is a
stateful signature.

Proof sketch: plug and pray, again.

18 / 28



(Many-Time) Stateful Signatures...

Theorem 6

If Σ1 is an OTS supporting arbitrary-length messages then Σs is a
stateful signature.

Proof sketch: plug and pray, again.

18 / 28



(Many-Time) Stateful Signatures...

Theorem 6

If Σ1 is an OTS supporting arbitrary-length messages then Σs is a
stateful signature.

Proof sketch: plug and pray, again.

18 / 28



(Many-Time) Stateful Signatures...

Theorem 6

If Σ1 is an OTS supporting arbitrary-length messages then Σs is a
stateful signature.

Proof sketch: plug and pray, again.

18 / 28



(Many-Time) Stateful Signatures...

The size of signatures in Σs grows linearly with the number of
signatures issued by the signer. How to fix this?

19 / 28



(Many-Time) Stateful Signatures...

The size of signatures in Σs grows linearly with the number of
signatures issued by the signer. How to fix this?

Idea: “tree of signatures”

Exercise 3 (Shorter stateful signature)

Prove that the construction Σss is secure. (Hint: plug and pray.)

19 / 28



(Many-Time) Stateful Signatures...

The size of signatures in Σs grows linearly with the number of
signatures issued by the signer. How to fix this?

Idea: “tree of signatures”

Exercise 3 (Shorter stateful signature)

Prove that the construction Σss is secure. (Hint: plug and pray.)

19 / 28



(Many-Time) Stateful Signatures...

The size of signatures in Σs grows linearly with the number of
signatures issued by the signer. How to fix this?

Idea: “tree of signatures”

Exercise 3 (Shorter stateful signature)

Prove that the construction Σss is secure. (Hint: plug and pray.)

19 / 28



(Many-Time) Stateful Signatures...

The size of signatures in Σs grows linearly with the number of
signatures issued by the signer. How to fix this?

Idea: “tree of signatures”

Exercise 3 (Shorter stateful signature)

Prove that the construction Σss is secure. (Hint: plug and pray.)

19 / 28



(Many-Time) Stateful Signatures...

The size of signatures in Σs grows linearly with the number of
signatures issued by the signer. How to fix this?

Idea: “tree of signatures”

Exercise 3 (Shorter stateful signature)

Prove that the construction Σss is secure. (Hint: plug and pray.)

19 / 28



(Many-Time) Stateful Signatures...

The size of signatures in Σs grows linearly with the number of
signatures issued by the signer. How to fix this?

Idea: “tree of signatures”

Exercise 3 (Shorter stateful signature)

Prove that the construction Σss is secure. (Hint: plug and pray.)

19 / 28



(Many-Time) Stateful Signatures...

The size of signatures in Σs grows linearly with the number of
signatures issued by the signer. How to fix this?

Idea: “tree of signatures”

Exercise 3 (Shorter stateful signature)

Prove that the construction Σss is secure. (Hint: plug and pray.)

19 / 28



(Many-Time) Stateful Signatures...

The size of signatures in Σs grows linearly with the number of
signatures issued by the signer. How to fix this?

Idea: “tree of signatures”

Exercise 3 (Shorter stateful signature)

Prove that the construction Σss is secure. (Hint: plug and pray.)

19 / 28



(Many-Time) Stateful Signatures...

The size of signatures in Σs grows linearly with the number of
signatures issued by the signer. How to fix this?

Idea: “tree of signatures”

Exercise 3 (Shorter stateful signature)

Prove that the construction Σss is secure. (Hint: plug and pray.)

19 / 28



(Many-Time) Signatures...

▶ Short stateful signature Σss + pseudo-random function
FK : {0, 1}ℓ+1 → {0, 1}λ ⇒ signature Σ

20 / 28



(Many-Time) Signatures...

▶ Short stateful signature Σss + pseudo-random function
FK : {0, 1}ℓ+1 → {0, 1}λ ⇒ signature Σ

Idea: Use to Derandomise OTS signature and key gen.

Exercise 4 (EU-CMA signature)

Prove that Σ is secure.

20 / 28



(Many-Time) Signatures...

▶ Short stateful signature Σss + pseudo-random function
FK : {0, 1}ℓ+1 → {0, 1}λ ⇒ signature Σ

Idea: Use to Derandomise OTS signature and key gen.

Exercise 4 (EU-CMA signature)

Prove that Σ is secure.

20 / 28



(Many-Time) Signatures...

▶ Short stateful signature Σss + pseudo-random function
FK : {0, 1}ℓ+1 → {0, 1}λ ⇒ signature Σ

Idea: Use to Derandomise OTS signature and key gen.

Exercise 4 (EU-CMA signature)

Prove that Σ is secure.

20 / 28



(Many-Time) Signatures...

▶ Short stateful signature Σss + pseudo-random function
FK : {0, 1}ℓ+1 → {0, 1}λ ⇒ signature Σ

Idea: Use to Derandomise OTS signature and key gen.

Exercise 4 (EU-CMA signature)

Prove that Σ is secure.

20 / 28



(Many-Time) Signatures...

▶ Short stateful signature Σss + pseudo-random function
FK : {0, 1}ℓ+1 → {0, 1}λ ⇒ signature Σ

Idea: Use to Derandomise OTS signature and key gen.

Exercise 4 (EU-CMA signature)

Prove that Σ is secure.

20 / 28



(Many-Time) Signatures...

▶ Short stateful signature Σss + pseudo-random function
FK : {0, 1}ℓ+1 → {0, 1}λ ⇒ signature Σ

Idea: Use to Derandomise OTS signature and key gen.

Exercise 4 (EU-CMA signature)

Prove that Σ is secure.

20 / 28



(Many-Time) Signatures...

▶ Short stateful signature Σss + pseudo-random function
FK : {0, 1}ℓ+1 → {0, 1}λ ⇒ signature Σ

Idea: Use to Derandomise OTS signature and key gen.

Exercise 4 (EU-CMA signature)

Prove that Σ is secure.

20 / 28



Plan for this Session

Digital Signature: Syntax and Modelling Security

One-Time Signatures

Many-Time (Stateful) Signatures

Efficient Signatures via Hash-and-Sign

Wrapping Up

21 / 28



Efficient Signatures via Hash-then-Invert...

▶ Efficient schemes under stronger hardness assumptions

22 / 28



Efficient Signatures via Hash-then-Invert...

▶ Efficient schemes under stronger hardness assumptions
▶ Trapdoor (one-way) permutation F ,F−1 : D → D

22 / 28



Efficient Signatures via Hash-then-Invert...

▶ Efficient schemes under stronger hardness assumptions
▶ Trapdoor (one-way) permutation F ,F−1 : D → D

▶ Syntax:

▶ Security: one-way without the knowledge of the trapdoor

▶ Instantiations of TDP
▶ RSA perm.: F (x) := xe mod N and F−1(y) := yd mod N,

where ed = 1 mod ϕ(N)
▶ From indistinguishability obfuscation and OWF

22 / 28



Efficient Signatures via Hash-then-Invert...

▶ Efficient schemes under stronger hardness assumptions
▶ Trapdoor (one-way) permutation F ,F−1 : D → D

▶ Syntax:

▶ Security: one-way without the knowledge of the trapdoor

▶ Instantiations of TDP
▶ RSA perm.: F (x) := xe mod N and F−1(y) := yd mod N,

where ed = 1 mod ϕ(N)
▶ From indistinguishability obfuscation and OWF

22 / 28



Efficient Signatures via Hash-then-Invert...

▶ Efficient schemes under stronger hardness assumptions
▶ Trapdoor (one-way) permutation F ,F−1 : D → D

▶ Syntax:

▶ Security: one-way without the knowledge of the trapdoor

▶ Instantiations of TDP
▶ RSA perm.: F (x) := xe mod N and F−1(y) := yd mod N,

where ed = 1 mod ϕ(N)
▶ From indistinguishability obfuscation and OWF

22 / 28



Efficient Signatures via Hash-then-Invert...

▶ Efficient schemes under stronger hardness assumptions
▶ Trapdoor (one-way) permutation F ,F−1 : D → D

▶ Syntax:

▶ Security: one-way without the knowledge of the trapdoor

▶ Instantiations of TDP
▶ RSA perm.: F (x) := xe mod N and F−1(y) := yd mod N,

where ed = 1 mod ϕ(N)
▶ From indistinguishability obfuscation and OWF

22 / 28



Efficient Signatures via Hash-then-Invert...

▶ Efficient schemes under stronger hardness assumptions
▶ Trapdoor (one-way) permutation F ,F−1 : D → D

▶ Syntax:

▶ Security: one-way without the knowledge of the trapdoor

▶ Instantiations of TDP
▶ RSA perm.: F (x) := xe mod N and F−1(y) := yd mod N,

where ed = 1 mod ϕ(N)
▶ From indistinguishability obfuscation and OWF

22 / 28



Efficient Signatures via Hash-then-Invert...

▶ Efficient schemes under stronger hardness assumptions
▶ Trapdoor (one-way) permutation F ,F−1 : D → D

▶ Syntax:

▶ Security: one-way without the knowledge of the trapdoor

▶ Instantiations of TDP
▶ RSA perm.: F (x) := xe mod N and F−1(y) := yd mod N,

where ed = 1 mod ϕ(N)
▶ From indistinguishability obfuscation and OWF

22 / 28



Efficient Signatures via Hash-then-Invert...

▶ TDP (F ,F−1) over domain D + hash function
H : {0, 1}∗ → D ⇒ signature Σ for M := {0, 1}∗

▶ Efficient: compact public key and short signatures

23 / 28



Efficient Signatures via Hash-then-Invert...

▶ TDP (F ,F−1) over domain D + hash function
H : {0, 1}∗ → D ⇒ signature Σ for M := {0, 1}∗

▶ Efficient: compact public key and short signatures

23 / 28



Efficient Signatures via Hash-then-Invert...

▶ TDP (F ,F−1) over domain D + hash function
H : {0, 1}∗ → D ⇒ signature Σ for M := {0, 1}∗

▶ Efficient: compact public key and short signatures

23 / 28



Efficient Signatures via Hash-then-Invert...

▶ TDP (F ,F−1) over domain D + hash function
H : {0, 1}∗ → D ⇒ signature Σ for M := {0, 1}∗

▶ Efficient: compact public key and short signatures

23 / 28



Efficient Signatures via Hash-then-Invert...

▶ TDP (F ,F−1) over domain D + hash function
H : {0, 1}∗ → D ⇒ signature Σ for M := {0, 1}∗

▶ Efficient: compact public key and short signatures

23 / 28



Efficient Signatures via Hash-then-Invert...

▶ TDP (F ,F−1) over domain D + hash function
H : {0, 1}∗ → D ⇒ signature Σ for M := {0, 1}∗

▶ Efficient: compact public key and short signatures

23 / 28



Efficient Signatures via Hash-then-Invert...

▶ TDP (F ,F−1) over domain D + hash function
H : {0, 1}∗ → D ⇒ signature Σ for M := {0, 1}∗

▶ Efficient: compact public key and short signatures

23 / 28



Efficient Signatures via Hash-then-Invert...

▶ TDP (F ,F−1) over domain D + hash function
H : {0, 1}∗ → D ⇒ signature Σ for M := {0, 1}∗

▶ Efficient: compact public key and short signatures

23 / 28



Efficient Signatures via Hash-then-Invert...

▶ TDP (F ,F−1) over domain D + hash function
H : {0, 1}∗ → D ⇒ signature Σ for M := {0, 1}∗

▶ Efficient: compact public key and short signatures

23 / 28



Efficient Signatures via Hash-then-Invert...

▶ TDP (F ,F−1) over domain D + hash function
H : {0, 1}∗ → D ⇒ signature Σ for M := {0, 1}∗

▶ Efficient: compact public key and short signatures

23 / 28



Efficient Signatures via Hash-then-Invert...

▶ TDP (F ,F−1) over domain D + hash function
H : {0, 1}∗ → D ⇒ signature Σ for M := {0, 1}∗

▶ Efficient: compact public key and short signatures

23 / 28



Efficient Signatures via Hash-then-Invert...

Theorem 7

If (F ,F−1) is a TDP and H is a random oracle then Σ is secure.

24 / 28



Efficient Signatures via Hash-then-Invert...

Theorem 7

If (F ,F−1) is a TDP and H is a random oracle then Σ is secure.

Proof sketch: random oracle programming.

24 / 28



Efficient Signatures via Hash-then-Invert...

Theorem 7

If (F ,F−1) is a TDP and H is a random oracle then Σ is secure.

Proof sketch: random oracle programming.

24 / 28



Efficient Signatures via Hash-then-Invert...

Theorem 7

If (F ,F−1) is a TDP and H is a random oracle then Σ is secure.

Proof sketch: random oracle programming.

24 / 28



Efficient Signatures via Hash-then-Invert...

Theorem 7

If (F ,F−1) is a TDP and H is a random oracle then Σ is secure.

Proof sketch: random oracle programming.

24 / 28



Efficient Signatures via Hash-then-Invert...

Theorem 7

If (F ,F−1) is a TDP and H is a random oracle then Σ is secure.

Proof sketch: random oracle programming.

24 / 28



Efficient Signatures via Hash-then-Invert...

Theorem 7

If (F ,F−1) is a TDP and H is a random oracle then Σ is secure.

Proof sketch: random oracle programming.

24 / 28



Efficient Signatures via Hash-then-Invert...

Theorem 7

If (F ,F−1) is a TDP and H is a random oracle then Σ is secure.

Proof sketch: random oracle programming.

24 / 28



Efficient Signatures via Hash-then-Invert...

Theorem 7

If (F ,F−1) is a TDP and H is a random oracle then Σ is secure.

Proof sketch: random oracle programming.

24 / 28



Efficient Signatures via Hash-then-Invert...

Theorem 7

If (F ,F−1) is a TDP and H is a random oracle then Σ is secure.

Proof sketch: random oracle programming.

24 / 28



Efficient Signatures via Hash-then-Invert...

Theorem 7

If (F ,F−1) is a TDP and H is a random oracle then Σ is secure.

Proof sketch: random oracle programming.

24 / 28



Efficient Signatures via Hash-then-Invert...

Theorem 7

If (F ,F−1) is a TDP and H is a random oracle then Σ is secure.

Proof sketch: random oracle programming.

24 / 28



Efficient Signatures via Hash-then-Invert...

Theorem 7

If (F ,F−1) is a TDP and H is a random oracle then Σ is secure.

Proof sketch: random oracle programming.

24 / 28



Efficient Signatures via Hash-then-Invert...

Theorem 7

If (F ,F−1) is a TDP and H is a random oracle then Σ is secure.

Proof sketch: random oracle programming.

24 / 28



Efficient Signatures via Hash-then-Invert...

Theorem 7

If (F ,F−1) is a TDP and H is a random oracle then Σ is secure.

Proof sketch: random oracle programming.

24 / 28



Efficient Signatures via Hash-then-Invert...

Theorem 7

If (F ,F−1) is a TDP and H is a random oracle then Σ is secure.

Proof sketch: random oracle programming.

24 / 28



Efficient Signatures via Hash-then-Invert...

Theorem 7

If (F ,F−1) is a TDP and H is a random oracle then Σ is secure.

Proof sketch: random oracle programming.

24 / 28



Efficient Signatures via Hash-then-Invert...

Theorem 7

If (F ,F−1) is a TDP and H is a random oracle then Σ is secure.

Proof sketch: random oracle programming.

24 / 28



Plan for this Session

Digital Signature: Syntax and Modelling Security

One-Time Signatures

Many-Time (Stateful) Signatures

Efficient Signatures via Hash-and-Sign

Wrapping Up

25 / 28



To Recap

▶ Constructions:
1. Theoretical construction of signature using OWF and CRHF

▶ CRHF can be replaced with universal one-way hash function
(UOWHF), which can be constructed from OWF

▶ Can be shown to be quantum secure

26 / 28



To Recap

▶ Constructions:
1. Theoretical construction of signature using OWF and CRHF

▶ CRHF can be replaced with universal one-way hash function
(UOWHF), which can be constructed from OWF

▶ Can be shown to be quantum secure

2. Efficient constructions in ROM
▶ RSA-PSS based on Hash-then-Invert
▶ Other approach: Fiat-Shamir Transform (e.g., Schnorr)

26 / 28



To Recap

▶ Constructions:
1. Theoretical construction of signature using OWF and CRHF

▶ CRHF can be replaced with universal one-way hash function
(UOWHF), which can be constructed from OWF

▶ Can be shown to be quantum secure

2. Efficient constructions in ROM
▶ RSA-PSS based on Hash-then-Invert
▶ Other approach: Fiat-Shamir Transform (e.g., Schnorr)

▶ Takeaways:

26 / 28



To Recap

▶ Constructions:
1. Theoretical construction of signature using OWF and CRHF

▶ CRHF can be replaced with universal one-way hash function
(UOWHF), which can be constructed from OWF

▶ Can be shown to be quantum secure

2. Efficient constructions in ROM
▶ RSA-PSS based on Hash-then-Invert
▶ Other approach: Fiat-Shamir Transform (e.g., Schnorr)

▶ Takeaways:
▶ Constructive:

▶ Bottom up constructive approach
▶ Tree-based construction (divide and conquer)

26 / 28



To Recap

▶ Constructions:
1. Theoretical construction of signature using OWF and CRHF

▶ CRHF can be replaced with universal one-way hash function
(UOWHF), which can be constructed from OWF

▶ Can be shown to be quantum secure

2. Efficient constructions in ROM
▶ RSA-PSS based on Hash-then-Invert
▶ Other approach: Fiat-Shamir Transform (e.g., Schnorr)

▶ Takeaways:
▶ Constructive:

▶ Bottom up constructive approach
▶ Tree-based construction (divide and conquer)

▶ Proof techniques:
▶ “Plug and pray”
▶ Random oracle programming

26 / 28



Thank You for Your Attention! More Questions?

27 / 28



References

1. Digital signature and its security models were formally studied
in [GMR88]

2. Lamport’s OTS is from [Lam79]

3. The stateful many-time signature is from [KL21], and is a in
spirit with Merkle’s signatures [Mer90]

4. The “hash-then-invert” paradigm in random-oracle model was
studied in [BR93]

28 / 28



Mihir Bellare and Phillip Rogaway.

Random oracles are practical: A paradigm for designing efficient protocols.

In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu,
and Victoria Ashby, editors, ACM CCS 93, pages 62–73. ACM Press,
November 1993.

Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest.

A digital signature scheme secure against adaptive chosen-message
attacks.

SIAM J. Comput., 17(2):281–308, 1988.

Jonathan Katz and Yehuda Lindell.

Introduction to Modern Cryptography, Third Edition.

CRC Press, 2021.

Leslie Lamport.

Constructing digital signatures from a one-way function.

Technical report, 1979.

Ralph C. Merkle.

A certified digital signature.

In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages
218–238. Springer, Heidelberg, August 1990.

28 / 28


	Digital Signature: Syntax and Modelling Security
	One-Time Signatures
	Many-Time (Stateful) Signatures
	Efficient Signatures via Hash-and-Sign
	Wrapping Up

