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Symmetric Key Encryption (SKE) : Recall

KeyGen→ K

C

Shared symmetric key

K K

Enc(K,m;r)→ C Dec(K,C)→ m’

• Correctness:

• IND-CPA Security 
(against eavesdropping adversary Eve)

∀ K ∈ Range(KeyGen), m’ = m



Asymmetric/Public Key Encryption (PKE)

KeyGen→ K

Enc(K,m;r)→ C Dec(K,C)→ m’

C

Shared symmetric key

• Correctness:

• IND-CPA Security 
(against eavesdropping adversary Eve)

∀ K ∈ Range(KeyGen), m’ = m

K K

Public and secret key

KeyGen→ (PK,SK)

PK SK

Dec(SK,C)→ m’Enc(PK,m;r)→ C

C

• Correctness:

• IND-CPA Security for PKE 
(against eavesdropping adversary Eve)

∀ PK,SK ∈ Range(KeyGen), m’ = m



IND-CPA Security (SKE): Recall

IND-CPA Security (Chosen Plaintext Attack)

KeyGen(𝜆) → K

Enc(K,m!)→ C! C!

AdversaryChallenger

EncK(.) Oracle access As many 
ciphertexts as it 

wants
m", m#b ← {0,1} m! ≠ m"

Output b′

∀ PPT adversaries, Pr b$ = b ≤ #
%
+ negl(λ)



IND-CPA Security for PKE

Enc(PK,m!)→ C! C!

Can itself generate 
ciphertexts

m", m#b ← {0,1} m! ≠ m"

Output b′

KeyGen(𝜆) → K

Enc(K,m!)→ C! C!

Oracle access As many 
ciphertexts as it 

wants
m", m#b ← {0,1} m! ≠ m"

Output b′

AdversaryChallenger

EncK(.)

AdversaryChallenger

KeyGen(𝜆) → PK,SK
PK

IND-CPA Security (Chosen Plaintext Attack)

∀ PPT adversaries, Pr b$ = b ≤ #
%
+ negl(λ)

IND-CPA Security (Chosen Plaintext Attack)

∀ PPT adversaries, Pr b$ = b ≤ #
%
+ negl(λ)



Perfect secrecy for PKE?

Enc(PK,m!)→ C! C!

Can itself generate 
ciphertexts

m", m#b ← {0,1} m! ≠ m"

Output b′

AdversaryChallenger

KeyGen(𝜆) → PK,SK
PK

∀ PPT adversaries, Pr b$ = b = #
%

Impossible to get perfectly secret PKE

• Any unbounded adversary, given PK and 
a ciphertext C ←Enc(PK,m), can 
determine m with probability 1.

Deterministic PKE? 
(where Enc is not a randomized algorithm)

EXERCISE 1



EXAMPLE OF AN 
IND-CPA SECURE PKE 



Groups
• Group (𝔾,∗) consists of set 𝔾 and operation ∗ that is:

Associative, has an identity, is invertible, and additionally (for us) commutative.

• Order of a group |𝔾| : number of elements in 𝔾.

For general ℤ#∗ : Extended Euclidean 
Algorithm

EXAMPLES

ℤ =(Integers, +) 

ℤ& =(Integers modulo 𝑛, 
+mod 𝑛)

Identity 0 Inverse of x is −x Infinite order

Identity 0 Inverse of x is (𝑛 − x)

ℤ'∗ =({1,2,3,4}, ×mod 5)

Order 𝑛

Identity 1 Inverses ? Order 4

abelian

EXERCISE 2x mod 5 such that 
gcd(x, 5) = 1



Groups
• Group (𝔾,∗) consists of set 𝔾 and operation ∗ that is:

Associative, has an identity, is invertible, and additionally (for us) commutative.

• Order of a group |𝔾| : number of elements in 𝔾.

• Lagrange’s Theorem: 

For any g ∈ 𝔾, g 𝔾 = g ∗ g ∗ ⋯∗ g 𝔾 times = identity.

• Finite Cyclic Group (in multiplicative notation):

∃ g ∈ 𝔾 such that 𝔾 = {g", g#, … , g 𝔾 $#}

abelian

g!
g"

g%
g 𝔾 '"

g 𝔾 '%

.

.
.

.
.
.ℤ%(additive group): generator g = 1

ℤ&∗ (multiplicative group): generator? EXERCISE 3



Computing on Groups
Need efficient algorithms to generate and operate on groups:

1. Generating group: Need an efficient algorithm that, given 𝜆, outputs a 
description of a cyclic group 𝔾, along with its order |𝔾| and its generator g.

2. Description of a group: This specifies how elements of 𝔾 are represented as bit-
strings, with each group element having a unique bit representation.

3. Efficient operations on group elements: There must be a polynomial time 
algorithm for adding, inverting, and randomly sampling a group element. Given 
generator g, there must be an efficient exponentiation algorithm to compute g(.

Need an ensemble of 
groups indexed by 𝜆

Introduction to Modern Cryptography, Katz and Lindell
(Appendix B)



Advent of Public Key Cryptography 

Whitfield 
Diffie 

Martin E. 
Hellman 

Ronald 
Rivest

Adi 
Shamir

Leonard
Adleman

The collaborative work of Clifford Cocks, James Ellis, and Malcolm 
Williamson at GCHQ resulted in the discovery of public key 
cryptography (PKC) in the early 1970s. Even though outside 
researchers subsequently made similar discoveries, the UK’s GCHQ 
did not make it public until 1997.      –National Security Agency (NSA)

Clifford
Cocks

James 
Ellis

Malcolm
Williamson

RSA Diffie-HellmanNon-secret encryption



Diffie-Hellman Key-exchange [1976]

How can Alice and Bob communicate 
via an insecure channel and
generate a shared secret key? 

X = g(
x ← ℤ)

Group Order Generator
Generate (𝔾, 𝑞, g)

y ← ℤ)
Y = g*Y

(𝔾, 𝑞, g), X

KeyAlice = Y( KeyBob = X*Given g) and g* for random x and y, g)+ should be 
hidden from Eve, i.e. g), g*, g)* ≈, (g), g*, R)

Depends on 
the group!



Discrete Log Assumption

Group Order Generator
Cyclic Group (𝔾, 𝑞, g)Discrete Log (w.r.t. g): DL- X ≔ unique x such that X = g)

x, g g(
Efficient 

exponentiation
⟹

EXERCISE 4
g(, g x

?
⟹

AdversaryChallenger

Gen(1.)⟶ (𝔾, 𝑞, g)
X ← 𝔾

(𝔾, 𝑞, g), X
x

Output: 1, if g) = X
0, otherwise

Discrete Log Assumption

∀ PPT Adversaries, Pr Output = 1 ≤ negl(𝜆)



Diffie-Hellman Key-exchange [1976]

How can Alice and Bob communicate 
via an insecure channel and
generate a shared secret key? 

X = g(
x ← ℤ)

Group Order Generator
Generate (𝔾, 𝑞, g)

y ← ℤ)
Y = g*Y

(𝔾, 𝑞, g), X

KeyAlice = Y( KeyBob = X*

Discrete Log Broken ⟹ DH Key-exchange broken

If Discrete log assumption is broken for (𝔾, 𝑞, g)

Eve gets x, y from g(, g* and hence can compute 𝑔+,



Decisional Diffie-Hellman Assumption

g(, g*, g(* 𝔾,),. ←012 #( , (,*←ℤ) ≈4 g(, g*, g5 𝔾,),. ←012 #( , (,*,5←ℤ)

Claim: Decisional Diffie-Hellman (DDH) assumption ⟹ Discrete Log (DLog) assumption
EXERCISE 5: Proof by reduction

No! E.g.: In ℤ/∗ for prime p, 
DLog assumption is believed to hold but DDH assumption doesn’t hold!

Dlog assumption ⟹ DDH assumption?



Diffie-Hellman Key-exchange [1976]

How can Alice and Bob communicate 
via an insecure channel and
generate a shared secret key? 

X = g(
x ← ℤ)

Group Order Generator
Generate (𝔾, 𝑞, g)

y ← ℤ)
Y = g*Y

(𝔾, 𝑞, g), X

KeyAlice = Y( KeyBob = X*

DDH Assumption ⟺ DH Key-exchange secure against Eve

(Eve’s transcript = ( 𝔾, 𝑞, g , X, Y), Key = 𝑔+,) ≈4 (Eve’s transcript, Random key)



ElGamal Encryption [Taher ElGamal 1985]

KeyGen: Uses Gen to get 𝔾, 𝑞, g , x ← ℤ)
PK = (𝔾, g, X = g(), SK = (𝔾, g, x)

X = g*
x ← ℤ+ y ← ℤ+

Y = g,Y

𝔾, 𝑞, g , X

KeyAlice = Y* KeyBob = X,One-time pad for 
messages in the group

Enc(PK, m): y ← ℤ)
(Y = g*, C = mX*)

Dec(SK, C): CY$(

• Alice’s message X in the key exchange becomes her public key.

• Bob’s message Y in the key exchange and the ciphertext of the one-time pad C
form the final ciphertext of the encryption.



IND-CPA Security of ElGamal Encryption

If DDH Assumption holds for the collection of groups used, then ElGamal is IND-CPA Secure.
THEOREM: 

PROOF: 

DDH Adversary A* (acts as IND-CPA Challenger) IND-CPA Adversary A

Gets challenge 𝔾, 𝑞, g , g*, g,, g-

where 𝔾, 𝑞, g ← Gen 1. , x, y ← ℤ+
and z = xy or z ← ℤ+

• Set PK = 𝔾, 𝑞, g , g*
• b ← {0,1}
• C/ = (g,, m/g-)

PK

m!, m"

C/

b′
If b0 = b output 1, else 0

When z ← ℤ+
A* outputs 1 w.p. "

%

When z = xy
(Exactly IND-CPA experiment)
A* outputs 1 w.p. "

%
+ AdvantageA



Coming up in Part II

• Security against Chosen ciphertext attacks (CCA) in PKE.

• Elgamal and CCA Security

• Random Oracle model

• Hybrid Encryption

• Example of CCA Secure PKE


