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Symmetric Key Encryption (SKE) : Recall

KeyGen— K ©=

Shared symmetric key

Enc(K,m;r)— C Dec(K,C)» m’

Correctness: V K € Range(KeyGen), m’ = m

IND-CPA Security
(against eavesdropping adversary Eve)



Asymmetric/Public Key Encryption (PKE)

¢ Correctness: Y K € Range(KeyGen), m’ = m
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Enc(K,m;r)— C Dec(K,C)» m’ Enc(PK,m;r)— C Dec(SK,C)—» m’



IND-CPA Security (SKE): Recall

P m i
Challenger Adversary %%1 :
KeyGen(1) » K :
S —— - Oradl As many ;

| Ency(.) TACC ACCESS , ciphertexts as it !
wants !
m ) m TTeessmzzmoeeeaetTT TN \ |

be{01} —— o Fmy
Enc(K,mp)-> C “ :
Output b’

IND-CPA Security (Chosen Plaintext Attack)

¥ PPT adversaries, Pr[b’ = b] <~ + negl(})



IND-CPA Security for PKE

&

Challenger Adversary @
KeyGen(1) » K

—— 0 - As many
~ Encg()) [ACICALCESS , ciphertexts as it
m ) m TTmssszzzooaeeeTT T .
b « {0,1} — 1 (mo #my 3 !
Enc(K,mb)—> Cb Cb R :
Output b’
|

IND-CPA Security (Chosen Plaintext Attack)

¥ PPT adversaries, Pr[b’ = b] <~ + negl(})

A

Challenger Adversary @ :
KeyGen(1) - PK,SK :
PK ~ Canitself generate

. ciphertexts !

m ) m TTmssszzzooeeeT T . :

be {01} e Mo Fm
Enc(PK,mp)— C, Cb |
Output b’

IND-CPA Security (Chosen Plaintext Attack)

V PPT adversaries, Pr[b’ = b] < % + negl(A)



Perfect secrecy for PKE?

V PPT adversaries, Pr[b’ = b] = % @9

Il

Challenger Adversary

: KeyGen(41) —» PK,SK

Impossible to get perfectly secret PKE : PK Can itself generate
! . ciphertexts
Any unbounded adversary, given PK and e
a ciphertext C «<Enc(PK,m), can ! b « {0,1) Mo My moiml
determine m with probability 1. " Enc(PK,my)— Cy, Cp :
: Output b’

EXERCISE 1 Deterministic PKE?

(where Enc is not a randomized algorithm)




EXAMPLE OF AN
IND-CPA SECURE PKE



Groups

* Group (G,*) consists of set G and operation * that is: abelian
Associative, has an identity, is invertible, and additionally (for us) commutative.

Order of a group |G| : number of elements in G.

EXAMPLES
Z =(Integers, +) Identity 0 Inverse of X is —x Infinite order
Zy, =(Integers modulo n, , ,
2 ool Identity O Inverse of x is (n — Xx) Order n
Ze =({1,2,3,4}, X mod 5) Identity 1 Inverses ? Order 4

x mod 5 such that For general Zy,: EX.tended Euclidean EXERCISE 2
acd(x,5) = 1 Algorithm



Groups

Group (G,*) consists of set G and operation * that is: abelian
Associative, has an identity, is invertible, and additionally (for us) commutative.

Order of a group |G| : number of elements in G.
Lagrange’s Theorem:

Forany g € G,g/® = g g« .- x g (|G| times) = identity.
Finite Cyclic Group (in multiplicative notation):

3 g € G such that G = {g° g%, ..., gl®I™1}
Ly (additive group): generator g = 1

Zz (multiplicative group): generator?| EXERCISE 3




Computing on Groups

Need an ensemble of

Need efficient algorithms to generate and operate on groups:
5 5 P sroup groups indexed by 4

1. Generating group: Need an efficient algorithm that, given A, outputs a
description of a cyclic group G, along with its order |G| and its generator g.

2. Description of a group: This specifies how elements of G are represented as bit-
strings, with each group element having a unique bit representation.

3. Efficient operations on group elements: There must be a polynomial time
algorithm for adding, inverting, and randomly sampling a group element. Given
generator g, there must be an efficient exponentiation algorithm to compute g*.

Introduction to Modern Cryptography, Katz and Lindell
(Appendix B)




Advent of Public Key Cryptography

Non-secret encryption RSA Diffie-Hellman

James Clifford Malcolm Adi Ronald Leonard Martin E. Whitfield
Ellis Cocks Williamson Shamir Rivest Adleman Hellman Diffie

The collaborative work of Clifford Cocks, James Ellis, and Malcolm BH R

Williamson at GCHQ resulted in the discovery of public key CODE-
cryptography (PKC) in the early 1970s. Even though outside D >
researchers subsequently made similar discoveries, the UK’s GCHQ :
did not make it public until 1997.  -National Security Agency (NSA) T T—




Diffie-Hellman Key-exchange [197¢]

How can Alice and Bob communicate
via an insecure channel and
generate a shared secret key?

Generate (G, g, g)

Group Order Generator

X « Zg ﬁ}} (G, q,8),X

X =g* Lj . Y Depends on
the group!

KeYAlice =Y*

Given g* and g¥ for random x and y, g should be
hidden from Eve, i.e. (g%, g¥,g*Y) =, (g% g¥,R)




Discrete Log Assumption

Cyclic Group (G, g, 8)

Discrete Log (w.r.t. g): DLg(X) := unique x such that X = g*

Group Order Generator

Efficient . X ?
D e 506 = X
[EXERCISE4 | SPOneniato
P -
. Challenger Adversary */ TQ '
; | Discrete Log Assumption
' Gen(1M)— (G, q,8)  (G,q,8),X

X

Output 1, if g*
: 0, 0therw1se

X« G > .V PPT Adversaries, Pr[Output = 1] < negl(1)



Diffie-Hellman Key-exchange [197¢]

Discrete Log Broken = DH Key-exchange broken

If Discrete log assumption is broken for (G, g, g)

Eve gets x,y from g*, g¥ and hence can compute g*”

X « Lg ﬁ;} (G,q9,8),X y « Z,
X = gX Y Y Y=g
I

KeYAlice =Y~ KeYBob = XY



Decisional Diffie-Hellman Assumption

{(g* g, gxy)}(@,,qlg)k(}en(ll), x,y—Zg ~. {(g" g, gr)}(G,q,g)eGen(f‘), Xy, reZg

[EXERCISE 5: Proof by reductioﬂ
Claim: Decisional Diffie-Hellman (DDH) assumption = Discrete Log (DLog) assumption

i Dlog assumption = DDH assumption? '

No! E.g.: In Zi; for prime p,
DLog assumption is believed to hold but DDH assumption doesn’t hold!



Diffie-Hellman Key-exchange [197¢]

DDH Assumption < DH Key-exchange secure against Eve

(Eve’s transcript = ((G, q,2), X, Y), Key = g*) =, (Eve’s transcript, Random key)

X « Lg @ (G,q,8),X : y « Z,
X =g /%3‘ Y Y =gV

KeYAlice =Y~ KeYBob = XY



ElGamal Encryption [Taher ElGamal 1985]

KeyGen: Uses Gen to get (G, q, 8), X « Z,

| |

PK = (G, g X = g5), SK = (G, g X) | |

) g’ g b ) g; | E |

| o

Enc(PK, m):y « Z, | y « Zg |
(Y =g%,C = mXY) | Y=gV |

\ ' !

B One-time pad for | Key e = YX Keyp, = XV |

Dec(SK, C): CY™™* messages in the group ﬂ jL |

— — — S— S— — 0 — 0 S—  S— 0 S— 0 S— 0 —  —  —

* Alice’s message X in the key exchange becomes her public key.

* Bob’s message Y in the key exchange and the ciphertext of the one-time pad C
form the final ciphertext of the encryption.



IND-CPA Security of ElGamal Encryption

THEOREM: |
If DDH Assumption holds for the collection of groups used, then ElGamal is IND-CPA Secure.

DDH Adversary A* (acts as IND-CPA Challenger) IND-CPA Adversary A

Gets challenge (G, q, g), g%, g, g*
where (G, q,g) < Gen(1),x,y « Z,

PK Whenz « Z,
andz =Xyorz« Z,

1
my, m, A* outputs 1 w.p. >

v

 SetPK=(G,q,g),g*
- be {01} Cp

A

> When z = xy
° ) y Z
Co = (87, mp8") ) b’ (Exactly IND-CPA experiment)
If b’ = b output 1, else 0 A* outputs 1 w.p. % + Advantage,



Coming up in Part I1

Security against Chosen ciphertext attacks (CCA) in PKE.
Elgamal and CCA Security

Random Oracle model

Hybrid Encryption

Example of CCA Secure PKE



