Fully-Homomorphic Encryption

Chethan Kamath

DIGITAL: SECURE: RESDONSIBLE

Recall from Yesterday's Sessions

Recall from Yesterday's Sessions

PUBLIC KEY UNIVERSE

Recall from Yesterday's Sessions

PUBLIC KEY UNIVERSE

Plan for this Session

Homomorphic Encryption

Plan for this Session

Homomorphic Encryption

Fully-Homomorphic Encryption (FHE)

Plan for this Session

Homomorphic Encryption

Fully-Homomorphic Encryption (FHE)

Learning with Errors (LWE)

Plan for this Session

Homomorphic Encryption

Fully-Homomorphic Encryption (FHE)

Learning with Errors (LWE)

Gentry-Sahai-Waters FHE from LWE

Plan for this Session

Homomorphic Encryption

Fully-Homomorphic Encryption (FHE)

Learning with Errors (LWE)

Gentry-Sahai-Waters FHE from LWE

Wrapping Up

Plan for this Session

Homomorphic Encryption

> Fully-Homomorphic Encryption (FHE)

> Learning with Errors (LWE)

Gentry-Sahai-Waters FHE from LWE

Wrapping Up

Example 1: Elgamal Encryption

Example 1: Elgamal Encryption

$$
(4,9, x)=S K \notin \operatorname{KCEN}\left(1^{x}\right)
$$

Example 1: Elgamal Encryption

Example 1: Elgamal Encryption

$$
\begin{aligned}
& (0,9, x)=S K \\
& \left(0,9,9^{x}\right)=P K
\end{aligned}
$$

Example 1: Elgamal Encryption

Example 1: Elgamal Encryption
$\operatorname{ENC}\left(\mathrm{PK} \mathrm{K}_{2}\right)$

Example 1: Elgamal Encryption
$\operatorname{ENC}\left(\mathrm{PK} \mathrm{g}_{2}\right)$

(HARLIE

$$
\begin{aligned}
& \begin{array}{l}
(4,9, x)=S K \nLeftarrow K G L E N\left(1^{\lambda}\right) \\
\hdashline\left(4, x^{x}\right)=P K
\end{array} \\
& \left(g_{1}^{r_{2}} M_{2}\left(g^{x}\right)^{r_{2}}\right) \\
& \left(6,9,9^{x}\right)=\text { PK } \ldots \ldots \ldots
\end{aligned}
$$

- What happens when we multiply ciphertexts?
- Is it possible to compute sum of plaintexts?

Example 1: Elgamal Encryption
$\operatorname{ENC}\left(\mathrm{PK} \mathrm{g}_{2}\right)$

$$
\left((1, g, x)=S K * K C E N\left(i{ }^{\lambda}\right)\right.
$$

$$
\left(0, g, g^{x}\right)=P K
$$

$$
\begin{gathered}
X_{2}\left(g^{r_{1}} g_{1}^{r_{2}} M_{1} M_{2}\left(g^{x}\right)^{r_{1}}\left(g^{x}\right)^{r_{2}}\right) \\
\left(g^{r_{1}}, M_{1}\left(g^{x}\right)^{r_{1}}\right)
\end{gathered}
$$

- What happens when we multiply ciphertexts?
- Is it possible to compute sum of plaintexts?

Example 1: Elgamal Encryption
$\operatorname{ENC}\left(\mathrm{PK} \mathrm{K}_{2}\right)$

CHARLIE

$$
(\mathbb{L}, 9, x)=S K \not{ }^{ \pm} K G E N\left(1^{\lambda}\right)
$$

$$
\left(0, g, g^{x}\right)=P K
$$

$$
\begin{aligned}
& X_{2}\left(g^{r_{1}+r_{2}}, M_{1} M_{2}\left(g^{x}\right)^{r_{1}+r_{2}}\right) \\
& \left(g^{r_{1}}, M_{1}\left(g^{x}\right)^{r_{1}}\right)
\end{aligned}
$$

- What happens when we multiply ciphertexts?
- Is it possible to compute sum of plaintexts?

Example 1: Elgamal Encryption
$\operatorname{ENC}\left(\mathrm{PK} \mathrm{g}_{2}\right)$

CHARLIE

$$
\begin{gathered}
X_{2}\left(g^{r}, M_{1} M_{2}\left(g^{x}\right)^{r}\right) \\
\left(g^{r_{1}}, M_{1}\left(g^{x}\right)^{r_{1}}\right)
\end{gathered}
$$

$(\mathbb{L}, g, x)=S K \notin K G E N\left(1^{\lambda}\right)$
$\left(1, g, 9^{x}\right)=P K$

- What happens when we multiply ciphertexts?
- Is it possible to compute sum of plaintexts?

Example 1: Elgamal Encryption
$\operatorname{ENC}\left(\mathrm{PK} \mathrm{g}_{2}\right)$

CHARLIE

$$
\begin{gathered}
X_{2}\left(g^{r}, M_{1} M_{2}\left(g^{x}\right)^{r}\right) \\
\left(g^{r_{1}}, M_{1}\left(g^{x}\right)^{r_{1}}\right)
\end{gathered}
$$

$(\mathbb{L}, g, x)=S K \notin K G E N\left(1^{\lambda}\right)$
$\left(1, g, 9^{x}\right)=P K$

- What happens when we multiply ciphertexts?
- Is it possible to compute sum of plaintexts?

What about DHIES?

Diffie-Hellman Integrated Encryption Scheme (DHIES) IND-CCA Hybrid Encryption

KeyGen: Uses Gen to get $(\mathbb{G}, q, g), \mathrm{x} \leftarrow \mathbb{Z}_{q}, \mathrm{X}=\mathrm{g}^{\mathrm{X}}$, specify a function $\mathrm{H}: \mathbb{G} \rightarrow\{0,1\}^{2 n}$

$$
\mathrm{PK}=(\mathbb{G}, q, \mathrm{~g}, \mathrm{X}, \mathrm{H}), \mathrm{SK}=(\mathbb{G}, q, \mathrm{~g}, \mathrm{x}, \mathrm{H})
$$

Encap(PK): $\mathrm{y} \leftarrow \mathbb{Z}_{q}$

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{E}} \| \mathrm{k}_{\mathrm{M}} \leftarrow \mathrm{H}\left(\mathrm{X}^{\mathrm{y}}\right) \\
& \mathrm{C}_{\mathrm{KEM}}=\mathrm{g}^{\mathrm{y}}
\end{aligned}
$$

$\operatorname{SKE} . \operatorname{Enc}\left(\mathrm{k}_{\mathrm{E}} \| \mathrm{k}_{\mathrm{M}}, \mathrm{m}\right)$:

$$
\mathrm{C}_{\mathrm{SKE}}=\left(\mathrm{C}=\operatorname{Enc}_{\mathrm{k}_{\mathrm{E}}}(m), \mathrm{MAC}_{\mathrm{k}_{\mathrm{M}}}(\mathrm{C})\right)
$$

What about DHIES?

Diffie-Hellman Integrated Encryption Scheme (DHIES) IND-CCA Hybrid Encryption

KeyGen: Uses Gen to get $(\mathbb{G}, q, g), \mathrm{x} \leftarrow \mathbb{Z}_{q}, \mathrm{X}=\mathrm{g}^{\mathrm{X}}$, specify a function $\mathrm{H}: \mathbb{G} \rightarrow\{0,1\}^{2 n}$

$$
\mathrm{PK}=(\mathbb{G}, q, \mathrm{~g}, \mathrm{X}, \mathrm{H}), \mathrm{SK}=(\mathbb{G}, q, \mathrm{~g}, \mathrm{x}, \mathrm{H})
$$

```
Encap(PK): \(\mathrm{y} \leftarrow \mathbb{Z}_{q}\)
        \(\mathrm{k}_{\mathrm{E}}| | \mathrm{k}_{\mathrm{M}} \leftarrow \mathrm{H}\left(\mathrm{X}^{\mathrm{y}}\right)\)
        \(\mathrm{C}_{\text {KEM }}=\mathrm{g}^{\mathrm{y}}\)
```

```
\(\operatorname{SKE} . \operatorname{Enc}\left(\mathrm{k}_{\mathrm{E}}| | \mathrm{k}_{\mathrm{M}}, \mathrm{m}\right)\) :
        \(\mathrm{C}_{\mathrm{SKE}}=\left(\mathrm{C}=\operatorname{Enc}_{\mathrm{k}_{\mathrm{E}}}(m), \mathrm{MAC}_{\mathrm{k}_{\mathrm{M}}}(\mathrm{C})\right)\)
\[
\mathrm{C}_{\mathrm{SKE}}=\left(\mathrm{C}=\operatorname{Enc}_{\mathrm{k}_{\mathrm{E}}}(m), \mathrm{MAC}_{\mathrm{k}_{\mathrm{M}}}(\mathrm{C})\right)
\]
```


Exercise 1

What happens when we (say) XOR ciphertexts?

Example 2: Goldwasser-Micali Bit Encryption

Example 2: Goldwasser-Micali Bit Encryption

$\operatorname{ENC}\left(P K_{g} b_{1}\right)$

Example 2: Goldwasser-Micali Bit Encryption

Example 2: Goldwasser-Micali Bit Encryption

CHARLIE
$\operatorname{EN}\left(P K_{g} b_{1}\right)$

$p q=N=P K$
PK

- What happens when we multiply ciphertexts?
- Is it possible compute product of plaintexts (modulo 2)?

Example 2: Goldwasser-Micali Bit Encryption
$\operatorname{ENC}\left(P \mathrm{~F}_{\mathrm{g}} \mathrm{b}_{2}\right)$

(HARLIE
$\operatorname{ENC}\left(P K_{g} b_{1}\right)$

$(-1)^{b_{2} r_{2}}(\bmod N)$
$X(-1)(-1)^{b_{2}} r_{2} r_{1}^{2} r_{2}^{2}(\bmod N)$

- What happens when we multiply ciphertexts?
- Is it possible compute product of plaintexts (modulo 2)?

Example 2: Goldwasser-Micali Bit Encryption

- What happens when we multiply ciphertexts?
- Is it possible compute product of plaintexts (modulo 2)?

Plan for this Session

Homomorphic Encryption

Fully-Homomorphic Encryption (FHE)

Learning with Errors (LWE)

Gentry-Sahai-Waters FHE from LWE

Wrapping Up

Defining Homomorphic Encryption

- Public-key encryption with additional evaluation algorithm
- Four-tuple of algorithms: (KGEN, ENC, DEC, EVAL)

Defining Homomorphic Encryption

- Public-key encryption with additional evaluation algorithm
- Four-tuple of algorithms: (KGEN, ENC, DEC, EVAL)

Defining Homomorphic Encryption

- Public-key encryption with additional evaluation algorithm
- Four-tuple of algorithms: (KGEN, ENC, DEC, EVAL)
$C_{2} \perp \operatorname{ENC}\left(\mathrm{PH}_{9} \mathrm{Ma}_{2}\right)$

Defining Homomorphic Encryption

- Public-key encryption with additional evaluation algorithm
- Four-tuple of algorithms: (KGEN, ENC, DEC, EVAL)

Defining Homomorphic Encryption

- Public-key encryption with additional evaluation algorithm
- Four-tuple of algorithms: (KGEN, ENC, DEC, EVAL)

Defining Homomorphic Encryption
Public-key encryption with additional evaluation algorithm

- Four-tuple of algorithms: (KGEN, ENC, DEC, EVAL)

Defining Homomorphic Encryption
Public-key encryption with additional evaluation algorithm

- Four-tuple of algorithms: (KGEN, ENC, DEC, EVAL)

Defining Homomorphic Encryption

- Public-key encryption with additional evaluation algorithm
- Four-tuple of algorithms: (KGEN, ENC, DEC, EVAL)

- FHE supports evaluation of arbitrary functions F
- Levelled FHE supports function of depth L

Security Model: IND-CPA for PKE

Security Model: IND-CPA for PKE

Exercise 2 (IND-CCA)

Can FHE be IND-CCA secure?

What is FHE Useful for?

- Privacy-preserving outsourcing of computation

What is FHE Useful for?

- Privacy-preserving outsourcing of computation

$$
\begin{aligned}
& \stackrel{F}{F}
\end{aligned}
$$

$$
\begin{aligned}
& \text { alle web serviles }
\end{aligned}
$$

What is FHE Useful for?

- Privacy-preserving outsourcing of computation

What is FHE Useful for?
Privacy-preserving outsourcing of computation

What is FHE Useful for?
Privacy-preserving outsourcing of computation

ALICE WEB SERVICES

Plan for this Session

Homomorphic Encryption

Fully-Homomorphic Encryption (FHE)

Learning with Errors (LWE)

Gentry-Sahai-Waters FHE from LWE

Wrapping Up

Cryptography Landscape

Cryptography Landscape

TOD HARD
unstructureo hardoness (MINICBYPT)
(3) ${ }^{\text {a }}$
structured haroness (ChYPTOMANA)
$\left(\begin{array}{l} 3 \\ -3 \\ 5 \end{array}\right)$
EASY

Cryptography Landscape

TOD HARD	
$P R C P R R F$ $\hat{S} \text { OWF }$	UWSTRUCTURED HARDNESS (MINCGYPT)
CRHF	(3)
PKE FHE	STRUCTUREO HABDNESS (ChYPTOMANA)
EASY	
PRIMI	

Cryptography Landscape

Cryptography Landscape

Cryptography Landscape

LWE: Solving "Noisy" Linear Equations is Hard

LWE: Solving "Noisy" Linear Equations is Hard

LWE: Solving "Noisy" Linear Equations is Hard

LWE: Solving "Noisy" Linear Equations is Hard

ELIMINATION

LWE: Solving "Noisy" Linear Equations is Hard

LWE: Solving "Noisy" Linear Equations is Hard

LWE: Solving "Noisy" Linear Equations is Hard

- Search vs decision LWE
- Solving LWE is at least as hard as solving certain lattice problems in the worst case [Regev05, Peikert09]

LWE: Solving "Noisy" Linear Equations is Hard

- Search vs decision LWE

- Solving LWE is at least as hard as solving certain lattice problems in the worst case [Regev05, Peikert09]

Regev's Bit Encryption: PKE from LWE

Regev's Bit Encryption: PKE from LWE

Regev's Bit Encryption: PKE from LWE

ALICE

Regev's Bit Encryption: PKE from LWE

г

Regev's Bit Encryption: PKE from LWE

ALICE

- What happens when you add two ciphertexts?

Regev's Bit Encryption: PKE from LWE...

- Correctness:

Regev's Bit Encryption: PKE from LWE...
Correctness:

Regev's Bit Encryption: PKE from LWE...

- Correctness:

Regev's Bit Encryption: PKE from LWE...

- Correctness:

Regev's Bit Encryption: PKE from LWE...

- Correctness:

- Security by hybrid argument

Exercise 3 (Security of Regev's Encryption)

Prove security formally.

Regev's Bit Encryption: PKE from LWE...

- Correctness:

- Security by hybrid argument

Exercise 3 (Security of Regev's Encryption)
Prove security formally.

Regev's Bit Encryption: PKE from LWE...

- Correctness:

- Security by hybrid argument

Exercise 3 (Security of Regev's Encryption)
Prove security formally.

Regev's Bit Encryption: PKE from LWE...

- Correctness:

- Security by hybrid argument

Exercise 3 (Security of Regev's Encryption)
Prove security formally.

Plan for this Session

Homomorphic Encryption

Fully-Homomorphic Encryption (FHE)

Learning with Errors (LWE)

Gentry-Sahai-Waters FHE from LWE

Wrapping Up

Let's Recall Eigenvectors

Let's Recall Eigenvectors

Definition 1

A (left) eigenvector of a square matrix \bar{C} is a vector \bar{v} such that $\bar{v} \bar{C}=\mu \bar{v}$ for some scalar μ, which is the eigenvalue.

Toy Example: "Eigenvector" Encryption

- An $N \times N$ matrix \bar{C} encrypts a bit μ under secret \bar{v} if $\bar{v} \bar{C}=\mu \bar{v}$

- Do we have an FHE?

Toy Example: "Eigenvector" Encryption

- An $N \times N$ matrix \bar{C} encrypts a bit μ under secret \bar{v} if $\bar{v} \bar{C}=\mu \bar{v}$

- Do we have an FHE?

Toy Example: "Eigenvector" Encryption

- An $N \times N$ matrix \bar{C} encrypts a bit μ under secret \bar{v} if $\bar{v} \bar{C}=\mu \bar{v}$

- Do we have an FHE?

Toy Example: "Eigenvector" Encryption

- An $N \times N$ matrix \bar{C} encrypts a bit μ under secret \bar{v} if $\bar{v} \bar{C}=\mu \bar{v}$

- Do we have an FHE?

Toy Example: "Eigenvector" Encryption

- An $N \times N$ matrix \bar{C} encrypts a bit μ under secret \bar{v} if $\bar{v} \bar{C}=\mu \bar{v}$

- Do we have an FHE?

Toy Example: "Eigenvector" Encryption

- An $N \times N$ matrix \bar{C} encrypts a bit μ under secret \bar{v} if

- Do we have an FHE?

Toy Example: "Eigenvector" Encryption

- An $N \times N$ matrix \bar{C} encrypts a bit μ under secret \bar{v} if

- Do we have an FHE?

Toy Example: "Eigenvector" Encryption

- An $N \times N$ matrix \bar{C} encrypts a bit μ under secret \bar{v} if

$=\mu_{1} \mu_{2} \square \bar{v}$
- Do we have an FHE?

Toy Example: "Eigenvector" Encryption

- An $N \times N$ matrix \bar{C} encrypts a bit μ under secret \bar{v} if

$=\mu_{1} \mu_{2} \square \overline{\mathrm{~V}}$
- Do we have an FHE?

ELIMINATION

How to Fix? Approximate Eigenvector Encryption

- \bar{C} encrypts a bit μ under secret \bar{v} if $\bar{v} \bar{C}+\bar{e}=\mu \bar{v}$ for "short" \bar{e}

- Do we have an FHE?
- For " B-bounded" \bar{C}, \bar{e} and μ, error grows exp. in levels
- Somewhat homomorphic: levelled FHE supporting log-depth F

How to Fix? Approximate Eigenvector Encryption

- \bar{C} encrypts a bit μ under secret \bar{v} if $\bar{v} \bar{C}+\bar{e}=\mu \bar{v}$ for "short" \bar{e}

- Do we have an FHE?
- For " B-bounded" \bar{C}, \bar{e} and μ, error grows exp. in levels
- Somewhat homomorphic: levelled FHE supporting log-depth F

How to Fix? Approximate Eigenvector Encryption

- \bar{C} encrypts a bit μ under secret \bar{v} if $\bar{v} \bar{C}+\bar{e}=\mu \bar{v}$ for "short" \bar{e}

- Do we have an FHE?
- For " B-bounded" \bar{C}, \bar{e} and μ, error grows exp. in levels
- Somewhat homomorphic: levelled FHE supporting log-depth F

How to Fix? Approximate Eigenvector Encryption

- \bar{C} encrypts a bit μ under secret \bar{v} if $\bar{v} \bar{C}+\bar{e}=\mu \bar{v}$ for "short" \bar{e}

- Do we have an FHE?
- For " B-bounded" \bar{C}, \bar{e} and μ, error grows exp. in levels
- Somewhat homomorphic: levelled FHE supporting log-depth F

How to Fix? Approximate Eigenvector Encryption

- \bar{C} encrypts a bit μ under secret \bar{v} if $\bar{v} \bar{C}+\bar{e}=\mu \bar{v}$ for "short" \bar{e}

- Do we have an FHE?
- For " B-bounded" \bar{C}, \bar{e} and μ, error grows exp. in levels
- Somewhat homomorphic: levelled FHE supporting log-depth F

How to Fix? Approximate Eigenvector Encryption

- \bar{C} encrypts a bit μ under secret \bar{v} if $\bar{v} \bar{C}+\bar{e}=\mu \bar{v}$ for "short" \bar{e}

- Do we have an FHE?
- For "B-bounded" \bar{C}, \bar{e} and μ, error grows exp. in levels
- Somewhat homomorphic: levelled FHE supporting log-depth F

How to Fix? Approximate Eigenvector Encryption

- \bar{C} encrypts a bit μ under secret \bar{v} if $\bar{v} \bar{C}+\bar{e}=\mu \bar{v}$ for "short" \bar{e}

- Do we have an FHE?
- For "B-bounded" \bar{C}, \bar{e} and μ, error grows exp. in levels
- Somewhat homomorphic: levelled FHE supporting log-depth F

How to Fix? Approximate Eigenvector Encryption

- \bar{C} encrypts a bit μ under secret \bar{v} if $\bar{v} \bar{C}+\bar{e}=\mu \bar{v}$ for "short" \bar{e}

- Do we have an FHE?
- For " B-bounded" \bar{C}, \bar{e} and μ, error grows exp. in levels
- Somewhat homomorphic: levelled FHE supporting log-depth F

How to Fix? Approximate Eigenvector Encryption

- \bar{C} encrypts a bit μ under secret \bar{v} if $\bar{v} \bar{C}+\bar{e}=\mu \bar{v}$ for "short" \bar{e}

- Do we have an FHE?
- For " B-bounded" \bar{C}, \bar{e} and μ, error grows exp. in levels
- Somewhat homomorphic: levelled FHE supporting log-depth F

How to Fix? Approximate Eigenvector Encryption

- \bar{C} encrypts a bit μ under secret \bar{v} if $\bar{v} \bar{C}+\bar{e}=\mu \bar{v}$ for "short" \bar{e}

- Do we have an FHE?
- For "B-bounded" \bar{C}, \bar{e} and μ, error grows exp. in levels
- Somewhat homomorphic: levelled FHE supporting log-depth F

How to Fix? Approximate Eigenvector Encryption

- \bar{C} encrypts a bit μ under secret \bar{v} if $\bar{v} \bar{C}+\bar{e}=\mu \bar{v}$ for "short" \bar{e}

- Do we have an FHE?
- For "B-bounded" \bar{C}, \bar{e} and μ, error grows exp. in levels
- Somewhat homomorphic: levelled FHE supporting log-depth F

How to Fix? Approximate Eigenvector Encryption

- \bar{C} encrypts a bit μ under secret \bar{v} if $\bar{v} \bar{C}+\bar{e}=\mu \bar{v}$ for "short" \bar{e}

- Do we have an FHE?
- For "B-bounded" \bar{C}, \bar{e} and μ, error grows exp. in levels
- Somewhat homomorphic: levelled FHE supporting log-depth F

How to Fix? Approximate Eigenvector Encryption

- \bar{C} encrypts a bit μ under secret \bar{v} if $\bar{v} \bar{C}+\bar{e}=\mu \bar{v}$ for "short" \bar{e}

- Do we have an FHE?
- For "B-bounded" \bar{C}, \bar{e} and μ, error grows exp. in levels
- Somewhat homomorphic: levelled FHE supporting log-depth F

Supporting Arbitrary Depth

- Two tricks:

1. Stick to messages μ from $\{0,1\}$ and F with NAND gates
2. "Flattening": embed matrix \bar{C} into a higher dimensional matrix \bar{C}^{\prime} such that
$2.1 \bar{C}^{\prime}$ has low (infinity) norm
2.2 Certain inner products "preserved"

Implemented using "gadget" matrix $\bar{G}: \mathbb{Z}_{q}^{n \times N} \rightarrow \mathbb{Z}_{q}^{n \times m}$ bit-decomposition function $G^{-1}: \mathbb{Z}_{q}^{n \times m} \times \mathbb{Z}_{q}^{n \times N}$

Supporting Arbitrary Depth

- Two tricks:

1. Stick to messages μ from $\{0,1\}$ and F with NAND gates
2. "Flattening": embed matrix \bar{C} into a higher dimensional matrix \bar{C}^{\prime} such that
$2.1 \bar{C}^{\prime}$ has low (infinity) norm
2.2 Certain inner products "preserved" $\quad m|\log q|$ Implemented using "gadget" matrix $\bar{G}: \mathbb{Z}_{q}^{n \times N} \rightarrow \mathbb{Z}_{q}^{n \times m}$ bit-decomposition function $G^{-1}: \mathbb{Z}_{q}^{n \times m} \times \mathbb{Z}_{q}^{n \times N}$

$$
\sum_{k \in[l]} a_{1 k} 2^{k}=a_{11}
$$

Supporting Arbitrary Depth

- Two tricks:

1. Stick to messages μ from $\{0,1\}$ and F with NAND gates
2. "Flattening": embed matrix \bar{C} into a higher dimensional matrix \bar{C}^{\prime} such that
$2.1 \bar{C}^{\prime}$ has low (infinity) norm
2.2 Certain inner products "preserved" $\quad m|\log q|$ Implemented using "gadget" matrix $\bar{G}: \mathbb{Z}_{q}^{n \times N} \rightarrow \mathbb{Z}_{q}^{n \times m}$ bit-decomposition function $G^{-1}: \mathbb{Z}_{q}^{n \times m} \times \mathbb{Z}_{q}^{n \times N}$

$$
\sum_{k \in[l]} a_{1 k} 2^{k}=a_{11}
$$

ancoo

Supporting Arbitrary Depth

- Two tricks:

1. Stick to messages μ from $\{0,1\}$ and F with NAND gates
2. "Flattening": embed matrix \bar{C} into a higher dimensional matrix \bar{C}^{\prime} such that
$2.1 \bar{C}^{\prime}$ has low (infinity) norm
2.2 Certain inner products "preserved"

$$
m[\log q]
$$

Implemented using "gadget" matrix $\bar{G}: \mathbb{Z}_{q}^{n \times N} \rightarrow \mathbb{Z}_{q}^{n \times m}$ bit-decomposition function $G^{-1}: \mathbb{Z}_{q}^{n \times m} \times \mathbb{Z}_{q}^{n \times N}$

Supporting Arbitrary Depth

- Two tricks:

1. Stick to messages μ from $\{0,1\}$ and F with NAND gates
2. "Flattening": embed matrix \bar{C} into a higher dimensional matrix \bar{C}^{\prime} such that
$2.1 \bar{C}^{\prime}$ has low (infinity) norm
2.2 Certain inner products "preserved"

$$
m[\log q]
$$

Implemented using "gadget" matrix $\bar{G}: \mathbb{Z}_{q}^{n \times N} \rightarrow \mathbb{Z}_{q}^{n \times m}$ bit-decomposition function $G^{-1}: \mathbb{Z}_{q}^{n \times m} \times \mathbb{Z}_{q}^{n \times N}$

Supporting Arbitrary Depth

- Two tricks:

1. Stick to messages μ from $\{0,1\}$ and F with NAND gates
2. "Flattening": embed matrix \bar{C} into a higher dimensional matrix \bar{C}^{\prime} such that
$2.1 \bar{C}^{\prime}$ has low (infinity) norm
2.2 Certain inner products "preserved"

$$
m\lceil\log q\rceil
$$

Implemented using "gadget" matrix $\bar{G}: \mathbb{Z}_{q}^{n \times N} \rightarrow \mathbb{Z}_{q}^{n \times m}$ bit-decomposition function $G^{-1}: \mathbb{Z}_{q}^{n \times m} \times \mathbb{Z}_{q}^{n \times N}$

Putting it all Together

Putting it all Together

Putting it all Together

Putting it all Together

Putting it all Together

Plan for this Session

Homomorphic Encryption

Fully-Homomorphic Encryption (FHE)

Learning with Errors (LWE)

Gentry-Sahai-Waters FHE from LWE

Wrapping Up

Genealogy of FHE Schemes

COURTESY: IAMA.AI

To Recap

- Saw partially homomorphic encryption schemes
- Learned about LWE and Regev's PKE based on LWE
- GSW FHE via approximate eigenvectors

To Recap

- Saw partially homomorphic encryption schemes
- Learned about LWE and Regev's PKE based on LWE
- GSW FHE via approximate eigenvectors
- Archisman's session for how to use FHE

$$
09
$$

References

1. The partially homomorphic schemes we discussed are from [EIG84, GM82]
2. The LWE problem was introduced in [Reg05], and the reduction from worst-case lattices problems was established in [Pei09]
3. The GSW FHE is from [GSW13]. The presentation here is from Halevi's survey [Hal17].
4. To learn more about lattices-based cryptography, the survey by Peikert [Pei16] is an excellent source.

Taher EIGamal．
A public key cryptosystem and a signature scheme based on discrete logarithms．
In G．R．Blakley and David Chaum，editors，CRYPTO＇84，volume 196 of LNCS，pages 10－18．Springer，Heidelberg，August 1984.

Shafi Goldwasser and Silvio Micali．
Probabilistic encryption and how to play mental poker keeping secret all partial information．
In 14th ACM STOC，pages 365－377．ACM Press，May 1982.
國 Craig Gentry，Amit Sahai，and Brent Waters．
Homomorphic encryption from learning with errors：Conceptually－simpler， asymptotically－faster，attribute－based．
In Ran Canetti and Juan A．Garay，editors，CRYPTO 2013，Part I，volume 8042 of LNCS，pages 75－92．Springer，Heidelberg，August 2013.

國 Shai Halevi．
Homomorphic encryption．
In Tutorials on the Foundations of Cryptography，pages 219－276．Springer International Publishing， 2017.

國 Chris Peikert．

Public-key cryptosystems from the worst-case shortest vector problem: extended abstract.
In Michael Mitzenmacher, editor, 41st ACM STOC, pages 333-342. ACM Press, May / June 2009.

Chris Peikert.
A decade of lattice cryptography.
Found. Trends Theor. Comput. Sci., 10(4):283-424, 2016.
Oded Regev.
On lattices, learning with errors, random linear codes, and cryptography.
In Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC, pages 84-93. ACM Press, May 2005.

