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Example 1: Elgamal Encryption

▶ What happens when we multiply ciphertexts?

▶ Is it possible to compute sum of plaintexts?
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What about DHIES?

Exercise 1

What happens when we (say) XOR ciphertexts?
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Defining Homomorphic Encryption

▶ Public-key encryption with additional evaluation algorithm
▶ Four-tuple of algorithms: (KGEN, ENC, DEC, EVAL)

▶ FHE supports evaluation of arbitrary functions F

▶ Levelled FHE supports function of depth L
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Security Model: IND-CPA for PKE

Exercise 2 (IND-CCA)

Can FHE be IND-CCA secure?
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LWE: Solving “Noisy” Linear Equations is Hard

▶ Search vs decision LWE

▶ Solving LWE is at least as hard as solving certain lattice
problems in the worst case
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Regev’s Bit Encryption: PKE from LWE...
▶ Correctness:

▶ Security by hybrid argument

Exercise 3 (Security of Regev’s Encryption)

Prove security formally.
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Let’s Recall Eigenvectors

Definition 1

A (left) eigenvector of a square matrix C̄ is a vector v̄ such that
v̄ C̄ = µv̄ for some scalar µ, which is the eigenvalue.
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Toy Example: “Eigenvector” Encryption

▶ An N × N matrix C̄ encrypts a bit µ under secret v̄ if
v̄ C̄ = µv̄

▶ Do we have an FHE?
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How to Fix? Approximate Eigenvector Encryption

▶ C̄ encrypts a bit µ under secret v̄ if v̄ C̄ + ē = µv̄ for “short” ē

▶ Do we have an FHE?
▶ For “B-bounded” C̄ , ē and µ, error grows exp. in levels
▶ Somewhat homomorphic: levelled FHE supporting log-depth F
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Supporting Arbitrary Depth

▶ Two tricks:

1. Stick to messages µ from {0, 1} and F with NAND gates
2. “Flattening”: embed matrix C̄ into a higher dimensional

matrix C̄ ′ such that

2.1 C̄ ′ has low (infinity) norm
2.2 Certain inner products “preserved”

Implemented using “gadget” matrix Ḡ : Zn×N
q → Zn×m

q

bit-decomposition function G−1 : Zn×m
q × Zn×N

q

21 / 27



Supporting Arbitrary Depth

▶ Two tricks:

1. Stick to messages µ from {0, 1} and F with NAND gates
2. “Flattening”: embed matrix C̄ into a higher dimensional

matrix C̄ ′ such that

2.1 C̄ ′ has low (infinity) norm
2.2 Certain inner products “preserved”

Implemented using “gadget” matrix Ḡ : Zn×N
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Putting it all Together
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Genealogy of FHE Schemes
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To Recap

▶ Saw partially homomorphic encryption schemes

▶ Learned about LWE and Regev’s PKE based on LWE

▶ GSW FHE via approximate eigenvectors

25 / 27



To Recap

▶ Saw partially homomorphic encryption schemes

▶ Learned about LWE and Regev’s PKE based on LWE

▶ GSW FHE via approximate eigenvectors

▶ Archisman’s session for how to use FHE
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Thank You for Your Attention! Questions?
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