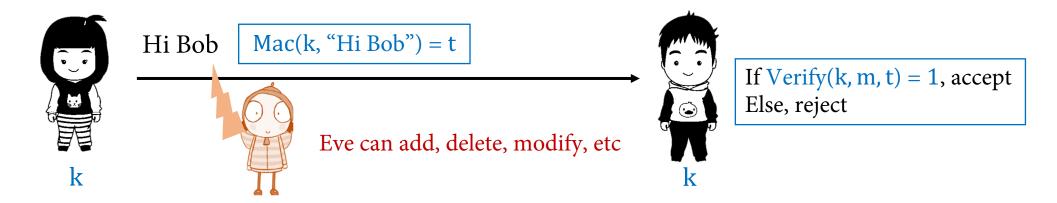
BASIC INFORMATION THEORETIC TOOLS-II

Information-theoretic MACs, Randomness Extractors

ACM Summer School 2024

Message Authentication

Can Bob find out if the message is indeed from Alice or not? (Accept if from Alice, else not)



- Gen: generates a secret key k
- Mac(k,m): Takes key k and message m and outputs a tag t
- Verify(k,m,t): Take key k along with the received m,t and output 0/1

Correctness $\forall k \leftarrow Ge$

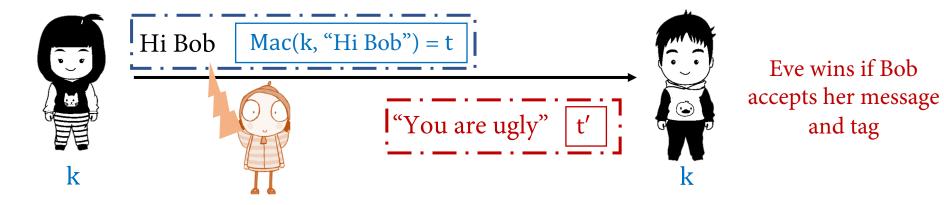
 $\forall k \leftarrow Gen \forall m, \forall t \leftarrow Mac(k, m), Verify(k, m, t) = 1$

Security

? (Eve is all powerful or computationally unbounded)

Message Authentication Codes (MAC)

Can Bob find out if the message is indeed from Alice or not? (Accept if from Alice, else not)



One-time Security of Information-theoretic MAC

Given (m, t = Mac(k, m)) Eve wins if she produces a (m', t') such that: $m' \neq m$ and Verify(k, m', t') = 1

(ε -secure) \forall unbounded Eve, $\Pr[\text{Eve wins}] \leq \varepsilon$

A Simple Information-theoretic MAC

- Gen: $k = (a, b) \leftarrow \mathbb{Z}_p^2$
- Mac(k,m): (am + b) mod p
- Verify(k,m,t): If $t = (am + b) \mod p$, output 1, else output 0

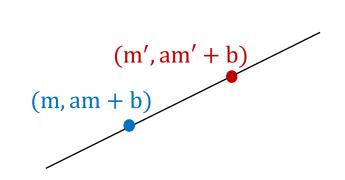
Theorem

(Gen, Mac, Verify) is a 1/p-secure one-time MAC.

Proof Sketch

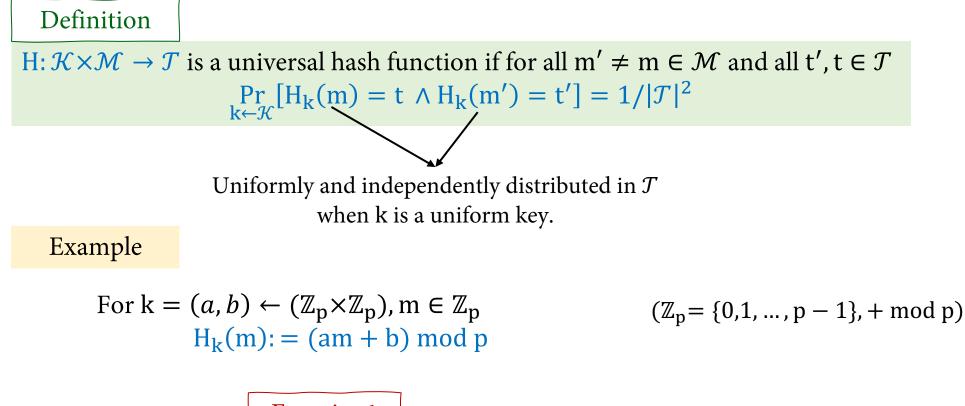
Given (m, t) such that $t = (am + b) \mod p$, and for any $m' \neq m$, what is the probability that Eve can find $t' = (am' + b) \mod p$?

 $(\mathbb{Z}_p = \{0,1,\ldots,p-1\}, + \text{mod } p)$



Given one point on a random line, can you find another point on it?

Universal Hash Functions



Exercise 1

Prove that H is a universal hash function.

MAC from Universal Hash Function

Given: H: $\mathcal{K} \times \mathcal{M} \to \mathcal{T}$ is a universal hash function

- Gen: $\mathbf{k} \leftarrow \mathcal{K}$
- Mac(k, m): For $m \in \mathcal{M}$, $t \coloneqq H_k(m)$
- Verify(k, m, t): If $t = H_k(m)$, output 1, else output 0

```
\begin{split} H_k(m) &:= (am + b) \bmod p \\ \\ \text{Gen: } k &= (a, b) \leftarrow \mathbb{Z}_p^2 \\ \\ \text{Mac}(k,m) &: (am + b) \bmod p \\ \\ \text{Verify}(k,m,t) &: \text{If } t &= (am + b) \bmod p, \\ \\ & \text{output } 1, \text{ else output } 0 \end{split}
```

Recall

Theorem

If $H: \mathcal{K} \times \mathcal{M} \to \mathcal{T}$ is a universal hash function, then (Gen, Mac, Verify) is a $1/|\mathcal{T}|$ -secure MAC.

Exercise 2: Prove it!

Hint: Since for $m' \neq m$, $H_k(m)$ and $H_k(m')$ are independently and uniformly distributed in \mathcal{T} , use a similar argument as before!

Limitations of Information-theoretic MACs

Gen: $k = (a, b) \leftarrow \mathbb{Z}_p^2$ Mac(k,m): (am + b) mod p Verify(k,m,t): If t = (am + b) mod p, output 1, else output 0

Recall

Security: $\varepsilon = 1/p$ Key Length:2p

Theorem

Let (Gen, Mac, Verify) be 1/2ⁿ-secure MAC where all keys output by Gen are of same length. Then, the keys output by Gen must have a length of at least 2n.

Intuition

Exercise 3

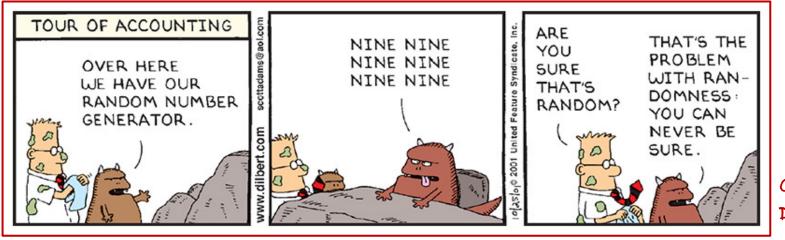
- Fix two distinct messages $m \neq m'$. There must be at least 2^n possibilities for the tag of m (or else Eve could guess it with probability better than 2^{-n})
- Further conditioned on the value of tag for m, there must be 2ⁿ possibilities for the tag of m' (or else Eve could forge a tag on m' with probability better than 2⁻ⁿ)
- Since each key defines a tag on m and m', there must be at least $2^n \times 2^n$ keys!

RANDOMNESS EXTRACTORS

Quest for Perfect Randomness

- Uniform randomness is crucial in many applications
 - Truly uniform bits are used to generate secret keys in Cryptography (One time pad)
 - Randomized algorithms assume access to truly uniform bits.
- In reality, random sources are not perfect
 - Correlated and biased bits (partial secrecy)
 - Physical sources, system RNGs, biometric data, etc.

Can we convert imperfect sources into (almost) uniform bits?



Credits Dilbert: Scott Adams

Imperfect source: Examples

IID-Bit Source

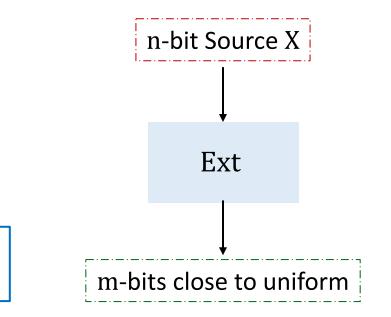
$$\begin{split} X &= X_1, X_2, \dots, X_n \in \{0,1\}: \text{ identical and independent, but biased} \\ &\forall i, \Pr[X_i = 1] = \delta \text{ for some unknown } \delta \\ &\text{How to convert into a source of independent unbiased bits?} \\ &\text{consider X in pairs,} \quad X_i X_{i+1} = \begin{cases} 01 \Rightarrow \text{output } 0 \\ 10 \Rightarrow \text{output } 1 \\ 00/11 \Rightarrow \text{discard} \end{cases} \end{split}$$

Independent-Bit Source

 $X = X_1, X_2, ..., X_n \in \{0,1\}: \text{ identical and independent, but different biased}$ $\forall i, \Pr[X_i = 1] = \delta_i \text{ for different } \delta_i \text{ s.t. } 0 < \delta < \delta_i \leq 1 - \delta \text{ for some constant } \delta$ How to convert into a source of independent unbiased bits? Output parity of each t bits: $\left|\Pr\left[\bigoplus_{i=1}^t X_i = 1\right] - \frac{1}{2}\right| \leq 2^{-\Omega(t)}$

Randomness Extraction

- Source: Random variable X over $\{0,1\}^n$ in certain class C
 - IndBits_{n, δ}: X = X₁, X₂, ..., X_n \in {0,1} independent bits, $\forall i, \Pr[X_i = 1] = \delta_i \text{ for } 0 < \delta < \delta_i \leq 1 - \delta$
 - IIDBits_{n, δ}: assume all δ_i are same



Deterministic Extractor

A function Ext: $\{0,1\}^n \rightarrow \{0,1\}^m$ such that \forall source $X \in C$, Ext(X) is " ε -close" to uniform.

How do you define closeness?

Statistical Distance

Definition I

X, Y be random variables over a range U. The statistical distance between X and Y is

$$\Delta(X, Y) \coloneqq \frac{1}{2} \sum_{u \in U} |\Pr[X = u] - \Pr[Y = u]|$$

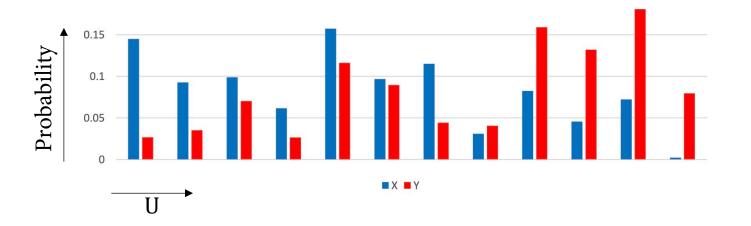
We say that X is ε -close to Y if $\Delta(X, Y) \leq \varepsilon$.

Example

0.2

X = (.15, .09, .10, .06, .16, .09, .11, .03, .08, .04, .078, .002)Y = (.03, .04, .07, .03, .11, .09, .04, .04, .16, .13, .18, .08)

X is ε -close to Y iff we can transform X into Y by "shifting" at most ε fraction of the probability mass.



Statistical Distance: Properties

Operational Definition II: Max advantage to distinguish X and Y $\Delta(X, Y) \coloneqq \max_{T \subseteq U} |\Pr[X \in T] - \Pr[Y \in T]|$

> If X is ε -close to Y, then for every event T $\Pr[X \in T] \le \Pr[Y \in T] + \varepsilon$

Exercise 4

Show equivalence of Definitions I and II

Data processing inequality: For any function f, $\Delta(f(X), f(Y)) \leq \Delta(X, Y)$

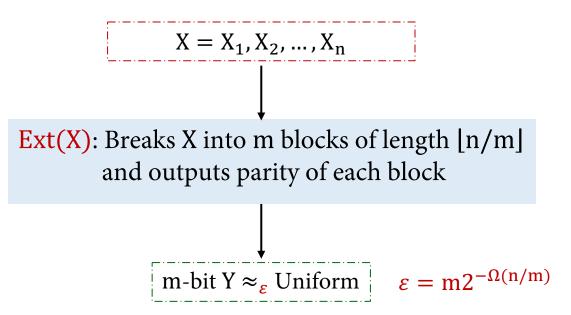
- i.e., post-processing only decreases the statistical distance!
- When f is bijective, equality holds. Why?

Exercise 5

Prove this inequality! Hint: use the Def II

Extractor for $IndBits_{n,\delta}$

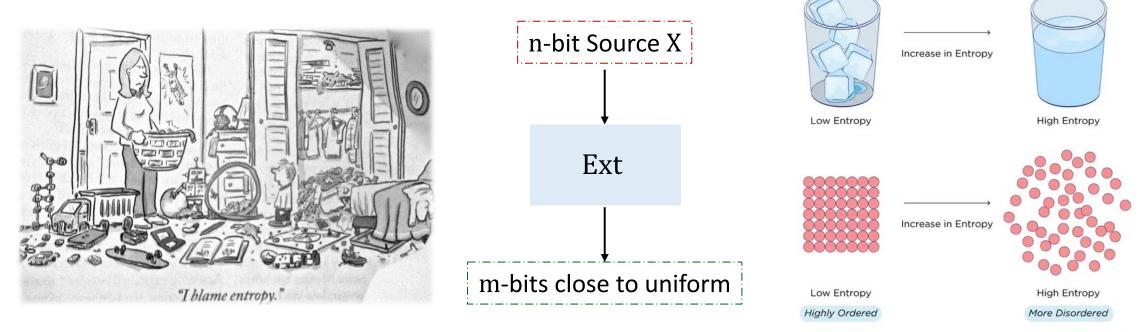
IndBits_{n, δ}: X = X₁, X₂, ..., X_n \in {0,1} independent bits, $\forall i, \Pr[X_i = 1] = \delta_i \text{ for } 0 < \delta < \delta_i \le 1 - \delta$



Extractor for General Sources?

Can we extract truly uniform bits from any source X? No, not if the source is not random, e.g. $X = 0^n$ w. p. 1

Hope is Ext works whenever X has sufficient "entropy"_



What entropy?

Attempt I: Shannon Entropy

Definition

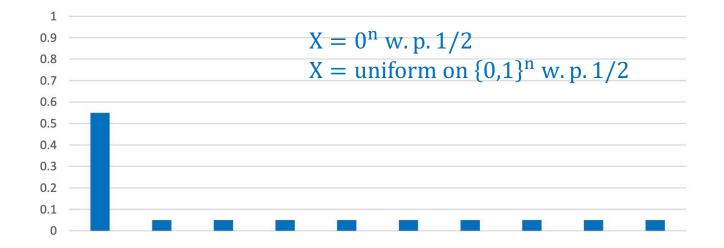
Shannon entropy

the average number of bits required to represent a string drawn from X

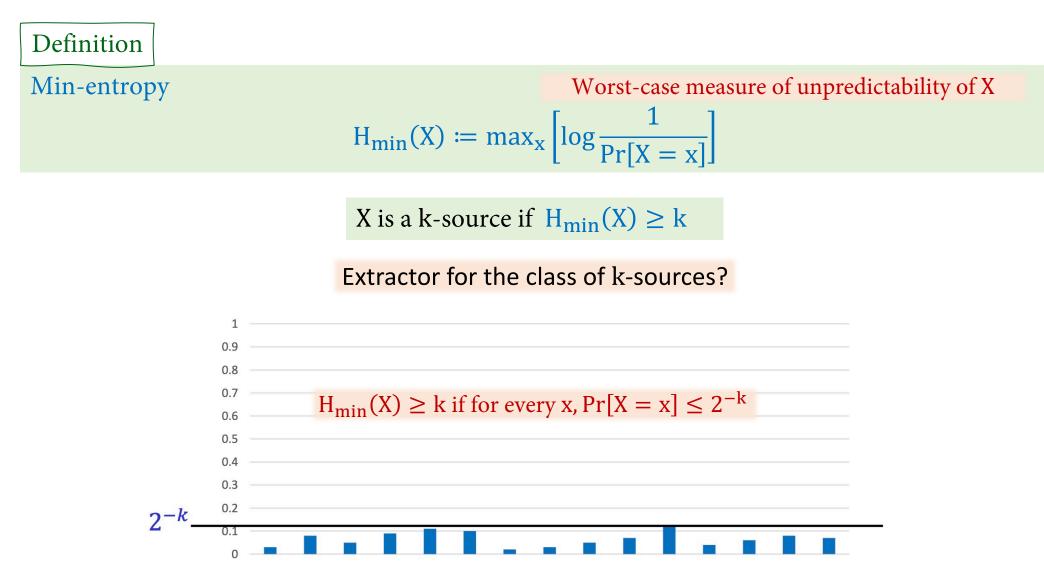
$$H_{sh}(X) \coloneqq \sum_{x} \Pr[X = u] \log \frac{1}{\Pr[X = x]} = E_{x \leftarrow X} \left[\log \frac{1}{\Pr[X = x]} \right]$$

Is this the right notion of entropy?

 $H_{sh}(X) \ge n/2$ but $Pr[X = 0^n] > 1/2$ Can't extract from X



Attempt II: Min-Entropy



Impossibility of Deterministic Extraction

Theorem

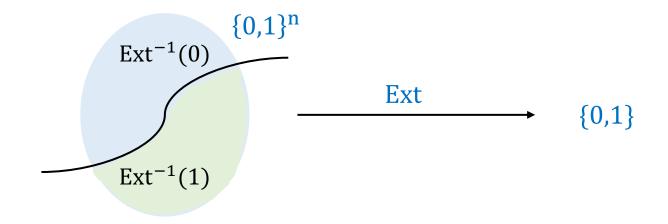
For any Ext: $\{0,1\}^n \rightarrow \{0,1\}$ there exists an (n-1)-source X such that Ext(X) = constant

Proof

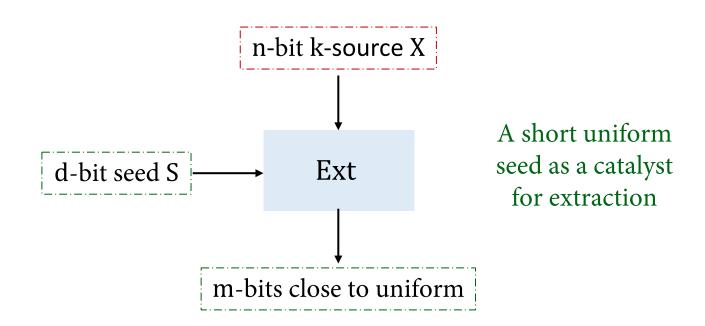
Consider
$$X_b = uniform \text{ on } Ext^{-1}(b)$$

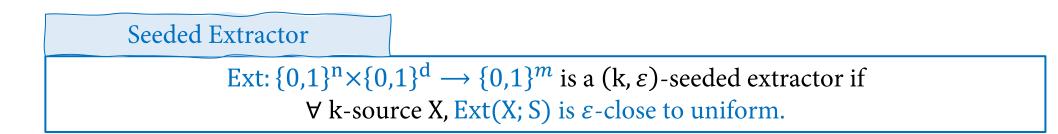
- $Ext(X_b) = constant$
- Either $H_{\min}(X_0)$ or $H_{\min}(X_1) \ge n-1$

Deterministic extractor for k-source is impossible even for extracting 1 bit and even for k = n - 1

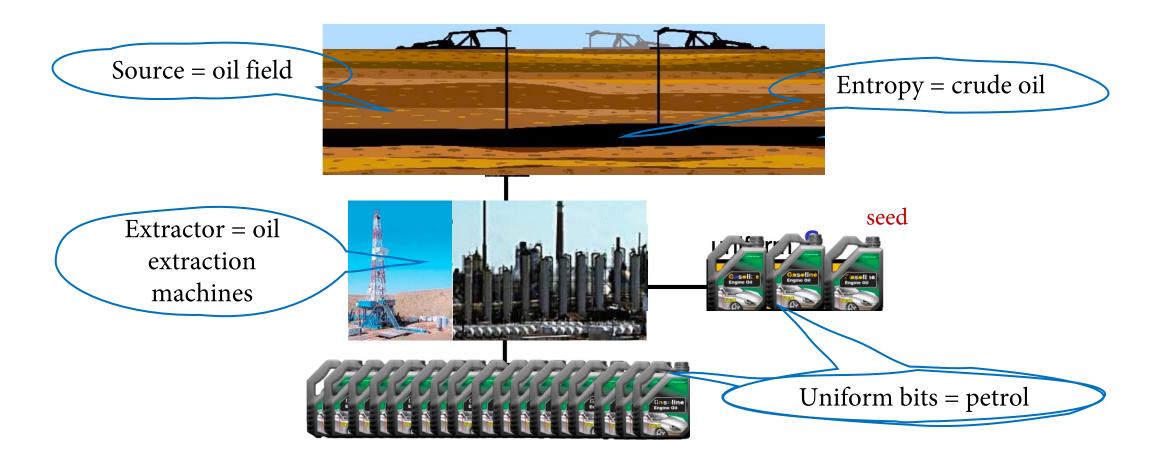


Seeded Extractors





Seeded Extractors: An Analogy



Pervasive Applications

- Diverse topics in Theoretical Computer Science
 - Cryptography, Derandomization & pseudorandomness, Distributed Algorithms Data Structures, Hardness of Approximation,...
- Many applications in Cryptography
 - Privacy Amplification, Bounded-storage model, PRG, Biometrics, Leakage-resilient crypto

