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Message Authentication

Hi Bob

Eve can add, delete, modify, etc

Can Bob find out if the message is indeed from Alice or not? (Accept if from Alice, else not)

• Gen: generates a secret key k
• Mac(k,m): Takes key k and message m and outputs a tag t
• Verify(k,m,t): Take key k along with the received m,t and output 0/1

k k

Mac(k, “Hi Bob”) = t
If Verify(k,m, t) = 1, accept
Else, reject

Correctness ∀k ← Gen ∀ m, ∀ t ← Mac k,m , Verify(k,m,t)= 1

Security ? (Eve is all powerful or computationally unbounded)



Message Authentication Codes (MAC)

One-time Security of Information-theoretic MAC  

Hi Bob

k k

Mac(k, “Hi Bob”) = t

Can Bob find out if the message is indeed from Alice or not? (Accept if from Alice, else not)

Given (m, t = Mac k,m ) Eve wins if she produces a (m!, t′) such that:
m′ ≠ m and Verify k,m!, t! = 1

“You are ugly” t′

Eve wins if Bob 
accepts her message 

and tag

∀ unbounded Eve, Pr[Eve wins] ≤ 𝜀(𝜀-secure)



A Simple Information-theoretic MAC

(m, am + b)

• Gen: k = (a, b) ← ℤ"#

• Mac(k,m): (am + b) mod p
• Verify(k,m,t): If t = (am + b) mod p, output 1, else output 0

Given one point on a random line, 
can you find another point on it?

Given	 m, t such	that	t = am + b mod p,	and	for	any	m! ≠ m,	
what	is	the	probability	that	Eve	can	find	t! = am! + b mod p?

(m!, am′ + b)

(ℤ"= {0,1, … , p − 1}, + mod p)

(Gen,Mac, Verify) is a 1/p-secure one-time MAC.
Theorem

Proof Sketch 

1/p



Universal Hash Functions

H:𝒦×ℳ → 𝒯 is a universal hash function if for all m′ ≠ m ∈ ℳ and all t!, t ∈ 𝒯
Pr
$←𝒦

H$ m = t ∧ H$ m! = t! = 1/ 𝒯 #

Definition

Uniformly and independently distributed in 𝒯
when k is a uniform key.

(ℤ"= {0,1, … , p − 1}, + mod p)For k = 𝑎, 𝑏 ← (ℤ"×ℤ"),m ∈ ℤ"
H$ m := (am + b) mod p

Example

Prove that H is a universal hash function.
Exercise 1



MAC from Universal Hash Function

Gen: k = (a, b) ← ℤ"#
Mac(k,m): (am + b) mod p
Verify(k,m,t): If t = (am + b) mod p,   

output 1, else output 0

• Gen: k ← 𝒦
• Mac(k,m): For m ∈ ℳ, t ≔ H$(m)
• Verify(k,m, t): If t = H$(m), output 1, 

else output 0

Given: H:𝒦×ℳ → 𝒯 is a universal hash function

Recall

H$ m := (am + b) mod p

If H:𝒦×ℳ → 𝒯 is a universal hash function, then (Gen,Mac, Verify) is a 1/|𝒯|-secure MAC.
Theorem

Hint: Since for m! ≠ m,H#(m) and H#(m′) are independently 
and uniformly distributed in 𝒯, use a similar argument as before!

Exercise 2: Prove it!



Limitations of Information-theoretic MACs
Gen: k = (a, b) ← ℤ"#

Mac(k,m): (am + b) mod p
Verify(k,m,t): If t = (am + b) mod p, output 1, else output 0

Recall

Security: 𝜀 = 1/p
Key Length:   2p

Let (Gen,Mac, Verify) be 1/2'-secure MAC where all keys output by Gen are of same length.
Then, the keys output by Gen must have a length of at least 2n.

Theorem

• Fix two distinct messages m ≠ m!. There must be at least 2' possibilities for the tag of m
(or else Eve could guess it with probability better than 2())

• Further conditioned on the value of tag for m, there must be 2' possibilities for the tag of m!

(or else Eve could forge a tag on m′ with probability better than 2())
• Since each key defines a tag on m and m′, there must be at least 2'× 2' keys!

Intuition Exercise 3



RANDOMNESS EXTRACTORS



Quest for Perfect Randomness
• Uniform randomness is crucial in many applications

• Truly uniform bits are used to generate secret keys in Cryptography (One time pad)
• Randomized algorithms assume access to truly uniform bits.

• In reality, random sources are not perfect
• Correlated and biased bits (partial secrecy)
• Physical sources, system RNGs, biometric data, etc.

Credits
Dilbert: Scott Adams

Can we convert 
imperfect sources into 
(almost) uniform bits?



Imperfect source: Examples

X = X*, X#, … , X' ∈ {0,1}: identical and independent, but biased
∀𝑖, Pr X+ = 1 = 𝛿 for some unknown 𝛿

How to convert into a source of independent unbiased bits?

consider X in pairs,     X+X+,* = c
01 ⟹ output 0
10 ⟹ output 1
00/11 ⟹ discar𝑑

IID-Bit Source

X = X*, X#, … , X' ∈ {0,1}: identical and independent, but different biased
∀𝑖, Pr X+ = 1 = 𝛿- for different 𝛿- s.t. 0 < 𝛿 < 𝛿- ≤ 1 − 𝛿 for some constant 𝛿

How to convert into a source of independent unbiased bits?
Output parity of each t bits: Pr ⊕+.*

/ X+ = 1 − *
#
≤ 2(0(/)

Independent-Bit Source



Randomness Extraction
• Source: Random variable X over 0,1 ' in certain class 𝒞

• IndBits',4: X = X*, X#, … , X' ∈ {0,1} independent bits, 
∀𝑖, Pr X+ = 1 = 𝛿- for 0 < 𝛿 < 𝛿- ≤ 1 − 𝛿

• IIDBits',4: assume all 𝛿- are same

A function Ext: 0,1 ' ⟶ 0,1 5 such that
∀ source X ∈ 𝒞, Ext(X) is “𝜀-close” to uniform.

Deterministic Extractor
Ext

n-bit Source X

m-bits close to uniform

How do you define closeness?



Statistical Distance

X, Y be random variables over a range U. The statistical distance between X and Y is

∆ X, Y ≔
1
2
r
6∈8

Pr X = u − Pr[Y = u]

Definition I

We say that X is 𝜀-close to Y if ∆ X, Y ≤ 𝜀.

X = .15, . 09, . 10, . 06, . 16, . 09, . 11, . 03, . 08, . 04, . 078, . 002
Y = (.03, . 04, . 07, . 03, . 11, . 09, . 04, . 04, . 16, . 13, . 18, . 08)

U

Pr
ob

ab
ili

ty

Example

X is 𝜀-close to Y iff we 
can transform X into Y
by “shifting” at most 𝜀

fraction of the 
probability mass.  



Statistical Distance: Properties

Operational Definition II: Max advantage to distinguish X and Y
∆ X, Y ≔ max

9⊂8
Pr X ∈ T − Pr[Y ∈ T]

Exercise 4
Show equivalence of 
Definitions I and II

If X is 𝜀-close to Y, then for every event T
Pr 𝑋 ∈ 𝑇 ≤ Pr 𝑌 ∈ 𝑇 + 𝜀

Data processing inequality: For any function f, ∆ f X , f Y ≤ ∆ X, Y

• i.e., post-processing only decreases the statistical distance!

• When f is bijective, equality holds. Why? Exercise 5
Prove this inequality!
Hint: use the Def II



IndBits',4: X = X*, X#, … , X' ∈ {0,1} independent bits, 
∀𝑖, Pr X+ = 1 = 𝛿- for 0 < 𝛿 < 𝛿- ≤ 1 − 𝛿

Extractor for IndBits!,#

X = X$, X%, … , X&

Ext(X): Breaks X into m blocks of length n/m
and outputs parity of each block

m-bit Y ≈' Uniform 𝜀 = m2()(&/,)



Extractor for General Sources?
Can we extract truly uniform bits from any source X?

No, not if the source is not random, e.g. X = 0' w. p. 1

Ext

n-bit Source X

m-bits close to uniform

Hope is Ext works whenever X has sufficient “entropy”
What entropy?



Attempt I: Shannon Entropy

Shannon entropy

H;< X ≔r
=

Pr X = u log
1

Pr X = x
= E=←> log

1
Pr X = x

Definition
the average number of bits required to represent a string drawn from X

Is this the right notion of entropy?

X = 0& w. p. 1/2
X = uniform on 0,1 & w. p. 1/2

H;< X ≥ 𝑛/2 but Pr X = 0) > 1/2 Can’t extract from X



Attempt II: Min-Entropy

Min-entropy 

H?+' X ≔ max= log
1

Pr X = x

Definition
Worst-case measure of unpredictability of X

X is a k-source if H?+' X ≥ k

Extractor for the class of k-sources?

H,.& X ≥ k if for every x, Pr X = x ≤ 2(#



Impossibility of Deterministic Extraction

For any Ext: 0,1 ' ⟶ {0,1} there exists an (n − 1)-source X such that Ext X = constant
Theorem

Proof

Ext($(0)
0,1 '

Ext
{0,1}

Consider X@ = uniform on Ext(*(b)

• Ext(X@) = constant
• Either H?+'(XA) or H?+' X* ≥ n − 1

Deterministic extractor for k-source is 
impossible even for extracting 1 bit and 

even for k = n − 1

Ext($(1)



Seeded Extractors

Ext

n-bit k-source X

m-bits close to uniform

A short uniform 
seed as a catalyst 

for extraction
d-bit seed S

Ext: 0,1 '× 0,1 B ⟶ 0,1 5 is a k, 𝜀 -seeded extractor if
∀ k-source X, Ext(X; S) is 𝜀-close to uniform.

Seeded Extractor



Seeded Extractors: An Analogy

Source = oil field Entropy = crude oil

Uniform bits = petrol

seedExtractor = oil 
extraction 
machines



Pervasive Applications

• Diverse topics in Theoretical Computer Science
• Cryptography, Derandomization & pseudorandomness, Distributed Algorithms

Data Structures, Hardness of Approximation,…

• Many applications in Cryptography
• Privacy Amplification, Bounded-storage model, PRG, Biometrics, 

Leakage-resilient crypto

Pseudorandomness
Salil P. Vadhan


