
mpC, A Programming Language for Cryptographers

mpC Team

1 Introduction

In this document we describe mpC, a first of its kind, platform-independent high-level programming language
for multi-party computation protocols that supports advanced features like protocol transformations (“MPC
in the head”). We believe that such a programming language has a crucial role to play in the development
of the full potential of MPC in practice and in academic research.

As MPC gets more widely accepted and used, customized MPC protocols will need to be developed and
updated frequently, to match specific trust assumptions, communication constraints and other idiosyncrasies
of the environment in which it will be deployed. A high-level programming language allows cryptogra-
phers to unambiguously specify new protocols, without having to handle lower-level implementation details
(which can be handled by the compiler of the language). On the other hand, optimizations carried out at the
compiler back-end will benefit all such protocols. A high-level language also allows the development of a
common protocol library resource, facilitates empirical comparison between protocols developed by differ-
ent teams (executed on the same back-end, to avoid confusing implementation improvements with protocol
improvements), and easy inter-operability across different deployment platforms.

A proof-of-concept compiler that supports most of the features required, and generates C++ code (which
can in turn be compiled using an optimizing C++ compiler), has been developed by us. The code will be
released publicly once all the core features are fully supported and adequately tested, and a basic library
has been developed. The language itself, as well as protocol libraries, are designed to be easily extensible
via user-defined types. Alternate compilers using other implementation techniques can also be developed
in the future. Many of the low level details (message formats, party addresses, session IDs, interface with
user-defined types, etc.) are not part of the language itself, but are standardized as part of our reference
implementation.

mpC is a “protocol specification language” which can be used to describe/define multi-party protocols
at a level of detail similar to that used in cryptographic literature. mpC separates the implementation task of
security protocols into the following steps:

1. Developing and refining optimizing compilers for the language;
2. Writing protocols in the language. While protocols for basic standard functionalities can be provided as

part of a library, for higher-level applications protocol generation will split again into:

(a) Specifying a functionality: A functionality is simply a protocol involving a trusted party, and is
easily programmed in mpC syntax.

(b) Transforming the functionality into a protocol that avoids the trusted party. There are two kinds of
transformations.
• Non-Blackbox Transformations: Using “protocol schemes” (e.g., GMW, BGW etc.), which act on

the code of the functionality.

1

• Blackbox Transformations: Using techniques like player virtualization and composition which
use other protocols in a black-box manner.

As described below, mpC provides rich support for all these steps, targeting not only the ease of end-users
(who write the functionalities), but also of the cryptographers (who program the schemes and the transfor-
mations, and may contribute to the protocol library).

2 Features of mpC

First, we present a code snippet to illustrate the fairly intuitive syntax of the language.

Protocol 1: mpC code example
1 uses type field {
2 field sample();
3 }
4 protocol sharing (int n, field F) : party Sndr, Rcvr[n] {
5 in each Rcvr[#i]
6 F share;
7 in Sndr {
8 F m, shares[n], sum = 0;
9 environ => m;

10 for each shares[#i] except i==0 {
11 shares[i] = F::sample();
12 sum = sum + shares[i];
13 }
14 shares[0] = m - sum;
15 }
16 for each Rcvr[#i]
17 Sndr.shares[i] => Rcvr[i].share;
18 in each Rcvr[#i]
19 share => environ;
20 }
21 protocol pointless(int m, field F) : party Clnt, Srvr[m] {
22 in Clnt
23 environ => F x;
24 in each Srvr[#i]
25 F share;
26 run sharing(m, F) {
27 @Clnt: x => Sndr =/;
28 @Srvr[#j]: =/ Rcvr[j] => share;
29 }
30 in each Srvr[#i]
31 share => environ;
32 }
33 protocol cointoss() : party P, Q {
34 uses protocol commitment(): party Sndr, Rcvr;
35 open commitment session com() { Sndr@P; Rcvr@Q; }
36 in P {
37 bool b, a = bool::sample();
38 a => com.Sndr; // make committment
39 }
40 in Q {
41 com.Rcvr => nil x; // wait to receive commitment
42 bool b = bool::sample();
43 }
44 Q.b => P.b;
45 in P {
46 "reveal" => com.Sndr; // request opening
47 a+b => environ;
48 }
49 in Q {
50 com.Rcvr => bool a; // receive opening
51 a+b => environ;
52 }
53 }

This code illustrates some basic features of the lan-
guage, like user-defined data types (e.g., field is
a user-defined type and a subtype of it is accepted
as an argument by the first two protocols, at lines
4 and 21), code blocks in individual parties us-
ing in (e.g., lines 7-14) and common code (e.g.,
lines 16-17), convenient syntax for looping using
the declaration-cum-iteration operator # (e.g., lines
10-13) and communicating using the send-cum-
assignment operator => (e.g., line 17 or 44), and
a compact syntax for invoking a sub-protocol us-
ing a run statement, with roles assigned using the @
statements (e.g., lines 26-29). It also shows the de-
fault port environ used by parties to communicate
with their environment and ports used to commu-
nicate with peer parties in the protocol (these ports
are simply specified by the peer party’s name). Ad-
ditional named ports connecting a party to its en-
vironment can also be declared. These ports can be
explicitly addressed, if necessary, though the => op-
erator can often be used to avoid the need for doing
so.

While run is adequate for a simple secure func-
tion evaluation (SFE) protocol invocation, we also
provide a more flexible mechanism to spawn off
a session of a subprotocol, which can be accessed
later on (e.g., for a reactive functionality). This uses
a built-in data type session. An illustrative exam-
ple of the use of a reactive subprotocol commitment
is given in the protocol cointoss (see lines 35, 38,
41, 46, 50).

Protocol Schemes. mpC provides a powerful mechanism to specify transformation of functionalities into
protocols. Such a specification is called a scheme. “General MPC protocols” (BGW, GMW, Yao’s Garbled
Circuit based 2PC etc.) are all such schemes. Note that a scheme specifies a non-blackbox transformation
to be applied to the given functionality. We develop a versatile syntax for scheme, using template matching.

Protocol 2: Snippet of a scheme
1 scheme gmw<T>(int n, type field F) : party P[n] {
2 uses protocol mult(int n, type field F) : party A[n];

3
...

4 template (type field F) {in T F a;} {
5 in each P[]
6 F a;
7 }
8 template (F T.a, F T.b, F T.c) {in T a = b*c;} {
9 run mult(n,F) {

10 @P[#i]: {b,c} => A[i] => a;
11 }
12 }

13
...

14 }

The snippet to the right
is from the GMW scheme.
Given a protocol which has
a trusted party (identified as
T in the scheme), the scheme
defines a protocol in which
that party is replaced with
an array of parties (P[n]).
Whenever a field variable is
declared in T, the scheme re-
places it by a declaration of
a variable by the same name
in the parties P[i]. When T

has a multiplication, it is re-
placed by a call to a protocol
mult executed by the parties
P[i]. The protocol mult (not
shown) accepts additive shares of a pair of field elements from n parties and returns to each of them a
share of the product of the two elements.

Another useful non-blackbox code transformation supported is “flattening.” This allows one to (re-
cursively) replace run statements with inline code of the protocol being invoked (after renaming variables
appropriately), until all the remaining run statements invoke protocols whose code is not available to the
compiler. Flattening can be applied to schemes as well as protocols.

Support for Blackbox Transformations. mpC also offers extensive features to support blackbox trans-
formations. In principle, the main requirement of blackbox transformations is the ability to access the
next-message function of a party in a protocol. This can be achieved if the party of interest can be executed
in isolation as a protocol session, with inputs and randomness of it controlled (based on a transcript). In mpC,
a versatile set of features provide a convenient way to implement this. Firstly, a partial open statement
can be used to create a session of a protocol in which only a subset of the parties are actually run. The entire
session could be private to a party, or could be shared between some parties. Secondly, a party that hosts one
or more parties in a session can exercise significant control over them: it can set or read their randomness,
and access or manipulate their incoming and outgoing messages. For the latter, a convenient feature is the
ability to connect the ports of those parties with each other, or with ports of the hosting party. Further,
reactions can be triggered when the hosted parties send or try to read from their ports (using a react block
to specify the reactions). This feature is important when the hosting party is to be programmed oblivious of
the protocols of the hosted parties (such as feeding input whenever the hosted party asks for it).

In Protocol 3 we show a complete specification of the IPS transformation that fits in about 60 lines of
code (with only the protocol for a fixed watchlist functionality not shown). This transformation takes an
outer protocol and an inner protocol that are assumed to have already been created.1 Note that the protocol
IPS takes these two protocols as input arguments, let its client parties host the client parties in a partial ses-
sion of the protocol outer, with the servers in that session replaced by sessions of the protocol wrapinner
(to which the protocol inner is passed as an argument). This protocol demonstrates the usefulness of

1For simplicity, the inner protocol is assumed to be in the plain model, and not invoke any subprotocols. See the flattening
feature above to get this.

partial open combined with the ability to wire ports together using connect. The protocol wrapinner
demonstrates the usefulness of the react statement to associate actions with port activity.

Protocol 3: IPS Transformation
1 protocol wrapinner (int nC, int nS, int index, field F, (protocol inner(int n, int index, field F) : party P[n]))
2 : party R[nC] each with {outport Wrandout, outport Wout, inport Wrandin[nC], inport Win[nC]} {
3 in each R[#i] { // implement P[i] of inner, possibly verifying the others.
4 partial open inner session Z(nC,index,F) { P[i]@self; }
5 connect Z.P[i] to environ;
6 forward Z.P[i]|random to Wrandout; // Report randomness on watchlist channel
7 connect environ to { Wout, Z.P[i] }; // "Tee" inputs to watchlist channel
8 start Z; // partial open requires explicit start
9 Win[i] => bool status; // status = is watchlist channel open to R[i]

10 inner session Q; // to run a shadow session if watchlist is open
11 if (status) {
12 partial open Q(nC,index,F) { for each Q.P[#j] except j==i P[j]@self; }
13 for each Q.P[#j] except j==i {
14 forward Wrandin[j] to Q.P[j]|random; // set randomness (allowed before start)
15 connect Win[j] to Q.P[j]|environ; // pass on inputs
16 }
17 start Q;
18 }
19 react { // Relay messages between Z.P[i] and peers R[j]
20 before each p of Z.P[i]|P[#j] except j==i {
21 R[j] => nil y;
22 if (status) { // Verify message from R[j] matches prediction by Q.P[j]
23 Q.P[j]|P[i] => nil x;
24 if (x!=y) abort;
25 }
26 y => p;
27 }
28 after each p of Z.P[i]|P[#j] except j==i {
29 p => nil y;
30 y => R[j];
31 if (status)
32 y => Q.P[j]|P[i];
33 }
34 }
35 }
36 }
37 protocol IPS (int nClnts, int nSrvrs, field F,
38 (protocol outer(int nC, int nS, field F) : party Clnt[nC], Srvr[nS]), (protocol inner(int n, int index, field F) : party P[n])
39) : party C[nClnts] {
40 uses protocol watchlist (int nC, int nS, field F)
41 : party P[nC] each with {inport WLrandreport[nS], inport WLreport[nS], outport WLrandread[nS][nC], outport WLread[nS][nC]};
42 wrapinner session In[nSrvrs]; // One wrapinner session per outer server
43 for each In[#s]
44 open In[s](nClnts,nSrvrs,s,F,inner) { R[]@C[]; }
45 open watchlist session W(nClnts,nSrvrs,F) { P[]@C[]; }
46 // connect wrapinner ports to watchlist
47 for each In[#s]
48 in each C[#i] {
49 connect In[s].R[i]|Wout to W.P[i]|WLreport[s];
50 connect In[s].R[i]|Wrandout to W.P[i]|WLrandreport[s];
51 for each win of In[s].R[i]|Win[#j]
52 connect W.P[i]|WLread[s][j] to win;
53 for each wirandn of In[s].R[i]|Wrandin[#j]
54 connect W.P[i]|WLrandread[s][j] to wrandin;
55 }
56 // C[i] will host Clnt[i] of an outer session (in which servers are not hosted)
57 partial open outer session Out(nClnts,nSrvrs,F) { Clnt[]@C[]; } // no servers
58 in each C[#i] {
59 for each o of Out.Clnt[i]|Srvr[#s]
60 connect o and In[s].R[i]; // connect with In[s].R[i] instead of Srvr[s]
61 connect environ and Out.Clnt[i];
62 }
63 }

User-Defined Types. In the protocols above the type field is not natively supported by the language (in
particular, it is not a keyword). Instead, it is a user-defined type. As our implementation uses C++, all
user-defined types are written in C++, inheriting from a base-class from which standard types also inherit.
Non-standard functions provided by a type (e.g., sample in field) need to be declared in the protocol uses
clause, to allow the mpC compiler to not flag their use as errors. We allow types to have sub-types (e.g.,
GF(p) can be implemented as a sub-type of field, specifying p at the time of instantiating the sub-type).
Note that types (or sub-types) themselves can be passed as arguments to protocols.

Importantly, user-defined types can be used as a mechanism to provide access to cryptographic prim-

itives (like pseudorandom functions or public-key encryption schemes), to resources like pre-computed
correlations stored in the file-system, or even generic access to a file-system (e.g., by providing a file type).

Accessing Persistent Sessions. mpC also supports “joint-state” protocols. The importance of joint-state
protocols is that “setups” are often modeled as trusted parties that can be accessed by multiple sessions. We
allow a single persistent session to be “joined” from various other sessions, with each party of the persistent
session temporarily hosted by a party in the joining session (provided the two are in the same “location”). To
facilitate this, we allow session variables (of persistent sessions) to be passed as an argument to protocols.

Potential Features for Future Versions. The following are a few features that are not incorporated in the
current implementation, but will be of value in the language.

• Current support for user-defined data-types is somewhat rudimentary. Full-fledged support for classes
could be included in a future version of mpC (or mpC ++). Further, more data-types can be made available
as part of a standard library.

• Currently, the primary execution model is an asynchronous model (with the ability for parties to configure
read timeouts). A future version can natively support a synchronous execution model, relying on the
availability of (approximately) synchronized clocks at all the parties.

• A future version can support automatic formal verification of various safety properties of protocols writ-
ten in a subset of the mpC language (after incorporating extensions that can be used to summarize the
input/output behavior of protocols).

• A future version may incorporate annotations for security models/assumptions into our protocol syntax, to
facilitate composition, by finding appropriate protocols to replace a functionality, subject to user-specified
requirements (e.g., an implementation of the OT functionality that is UC-secure in the random oracle
model).

2.1 Implementation Notes

We have implemented a compiler for mpC, which translates mpC code into C++ code. Our compiler itself
is written in Python, using ANTLR for generating the parser. The compiler carries out significant semantic
checks to help catch coding bugs and errors, before producing C++ code. The C++ code produced makes
extensive use of standard Boost libraries and pthreads (each party is a thread, with appropriate code loaded
dynamically when the party is created). Thread-safe data structures are used to maintain the state of all the
parties, ports, connections, communication buffers, trigger buffers (to support react), etc., at each location.
A thread-pool can be optionally enabled, in which case the system limits concurrency when short on threads,
and instead prioritizes completing the execution without entering into deadlocks caused by non-availability
of threads.

Interfacing with External Programs. Current implementation provides basic support for interfacing with
external programs and protocols. There are two ways one could use an external protocol for a functionality
like, say, OT. Firstly, the external protocol can be used to pre-compute values that are stored locally at each
location; then, a protocol with a persistent session can be used to access the pre-computed values thread-
safely. Alternately, a C++ wrapper can be written to interface with the external protocol, so that it can be
accessed just like accessing a protocol created by the mpC compiler.

Currently, external (distributed) programs can invoke mpC protocols by creating appropriate configura-
tion files and launching the mpC engine at each location. In future, an API may be provided to simplify
this.

Standardization of Formats. Data storage and communication formats need to be standardized to enable
different tools to interoperate (e.g., an mpC program that uses correlated keys generated using a different
tool). Future versions of mpC may include proposals for such standards, when appropriate.

3 Contributors

mpC has received inputs from several contributors. The initial discussions on mpC were carried out at Mi-
crosoft Research Bangalore, in Summer 2017. This discussion involved Manoj Prabhakaran and Sanat
Anand from IIT Bombay, and Divya Gupta, Rahul Sharma, Aseem Rastogi and Nishant Chandran at MSR.
Subsequent development of the language was carried out at IIT Bombay mainly by Rajeev Raghunath (2018-
) and Manoj Prabhakaran, with contributions from Kartik Singhal (2019-20), Onkar Deshpande (2020-21),
Shivam Goel (2021-22), Hemant Chodipilli (2021-22), Mayank Kakad (2022-23) and Neeraj Jadhav (2023-
24).

	1 Introduction
	2 Features of mpC
	2.1 Implementation Notes

	3 Contributors

